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Al Arms Race in Math and Coding
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Al Arms Race in Math and Coding

Al achieves silver-medal standard

solving International Mathematical
[XTX] AIMO Olympiad problems

MARKETS .mT-iEM TICAL OLY MPIAD

[ $10mn Al Mathematical Olympiad Prize Launches ]

Q Google DeepMind

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
Verification



Al Arms Race in Math and Coding

Al achieves silver-medal standard

solving International Mathematical
[XTX] AIMO Olympiad problems

MARKETS MATHEMATICAL OLVMPIAD
[ $10mn Al Mathematical Olympiad Prize Launches ] pe A
@ Google DeepMind
Fass@! Pass@4 Pass@&
2,

@ = E PO C H AI od-mini (high) 92% 16 6% 20.0%

Ope nAl o3-mini  FrontierMath ™ o o
A math benchmark testing the Imits of Al ol 5.5% 105 12.8%

Fasning thetreetier ot coat-atter FRASIM.
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Why Math and Coding?

« Proxies for complex reasoning and planning
« Important in human intelligence; challenging for LLMs
 Unlimited applications: travel planning, calendar scheduling, etc.

» Relatively easy to evaluate
« Math: check the answers
« Caoding: run unit tests
« Writing a crime fiction? Composing a symphony?

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
Verification



How LLMs are Trained to Solve Math
Problems?

« Supervised finetuning (SFT): “Good data is all you need!”

« Reinforcement learning (RL): “Verifiability is all you need!”

» Methods are straightforward, but the devil is in the details, e.g., data curation/
cleaning, infrastructures for training and inference

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
Verification



Supervised Finetuning on Mathematical
Data

O

LLM pretrained
on text and code
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Supervised Finetuning on Mathematical
Data

Math-related
web documents

=

LLM pretrained Base math
on text and code LLM
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Supervised Finetuning on Mathematical
Data

Math-related
web documents

Problems w/ step-
by-step solutions

> En

LLM pretrained Base math Finetuned
on text and code LLM math LLM
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Supervised Finetuning on Mathematical

Data

Math-related
web documents

=

Problems w/ step-

by-step solutions
Problems w/ tool-
integrated solutions

— —

LLM pretrained Base math Finetuned Tool-
on text and code LLM math LLM integrated
math LLM

Formal Reasoning Meets LLMs: Towards Al for Mathematics and

Verification

Problem: Suppose that the sum of the squares of two
complex numbers x and y is 7, and the sum of their cubes
is 10. List all possible values for x + y, separated by
commas.

Solution: Let’'s use 'sympy’ to calculate and print all

possible values for x + y.
b
defl possible_values():

X, ¥ = synbols("x y*]

eql = Eqix+*2 + y++2, 7}

en2 = Fqix==+3 + y+%3, 19)

solutions = solve{(eql, eq2), (x, yl})

return [simplify(sol(®] + sol[1]) for sol in solutions)

print(possible_values(})

P >>>[5,-51,1,4,4]

Removing duplicates, the possible values for x + y are
\boxed{-5, 1, 4}

11



Supervised Finetuning on Mathematical
Data

Math-related
web documents

Problem: Suppose that the sum of the squares of two

Problems w/ step- complex numbers x and y is 7, and the sum of their cubes
. is 10. List all possible values for x + y, separated by
by-step solutions ——

Problems w/ tool-

integrated solutions Solution: Let’s use “sympy’ to calculate and print all
possible values for x + y.

del possible_values():
X, ¥ = synbals{"x y*)
- - eql = Eqix+=*2 + y#x2, 7}
en2 = Fqix==+3 + y+%3, 19)
solutions = solve{(eql, eq2), (x, yl})

return [simplify(sol(®] + sol[1]) for sol in solutions)
@ ® ® printipossible_values(})
P > [5,-51,1,4,4]

Removing duplicates, the possible values for x + y are

LLM pretrained Base math Finetuned Tool- \boxed{-5, 1, 4}
on text and code LLM math LLM integrated
math LLM

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
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Supervised Finetuning on Mathematical
Data

o Training data is foremost important Problem: Suppose that the sum of the squares of two
. complex numbers x and y is 7, and the sum of their cubes
 Problems + (Step'bY'Step, ’[OOI-Integrated) is 10. List all possible values for x + y, separated by
solutions curated by humans and LLMs commas.
e Size of |argest pu blic datasets: ~900K Solution: Let’s use "sympy’ to calculate and print all

possible values for x + y.
[Li et al.,

NuminaMath-1.5]

defl possible_values():
X, ¥ = synbals{"x y*)
eql = Eqix=*2 + y+x2, 7}
en2 = Eqix#+3 + y+x3, 19)
solutions = solve{(eql, eq2}, (x, y})
return [simplify(sol[®) + sol[l1]) for sol in solutions)

print(possible_values(})

P >>>[-5-51,1,4,4]

Removing duplicates, the possible values for x + y
are \boxed{-5, 1, 4}

Formal Reasoning Meets LLMs: Towards Al for Mathematics and 13
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Supervised Finetuning on Mathematical
Data

o Training data is foremost important Problem: Suppose that the sum of the squares of two
. complex numbers x and y is 7, and the sum of their cubes
 Problems + (Step'bY'Step, ’[OOI-Integrated) is 10. List all possible values for x + y, separated by
solutions curated by humans and LLMs commas.
+ Size of largest public datasets: ~900K
[Li et al.,
NuminaMath-1.5]
 What if the data has final answers but not
intermediate steps ?
-5,1,4
Formal Reasoning Meets LLMs: Towards Al for Mathematics and 14
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Reinforcement Learning on Verifiable
Problems

Problem: Suppose that the sum of the squares of two
complex numbers x and y is 7, and the sum of their cubes
is 10. List all possible values for x + y, separated by
commas.

-5,1,4

Formal Reasoning Meets LLMs: Towards Al for Mathematics and 15
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Reinforcement Learning on Verifiable
Problems

Problem: Suppose that the sum of the squares of two
<«— complex numbers x and y is 7, and the sum of their cubes
is 10. List all possible values for x + y, separated by
commas.

-5,1,4

Formal Reasoning Meets LLMs: Towards Al for Mathematics and 16
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Reinforcement Learning on Verifiable
Problems

commas.

Solution: ... \bOXGd{-5, 1 y '\ Problem: Suppose that the sum of the squares of two
4} < complex numbers x and y is 7, and the sum of their cubes
is 10. List all possible values for x + y, separated by

-5,1,4

Formal Reasoning Meets LLMs: Towards Al for Mathematics and 17
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Reinforcement Learning on Verifiable
Problems

/ Solution: ... \bOXGd{'5, 1, '\ Problem: Suppose that the sum of the squares of two
4} < complex numbers x and y is 7, and the sum of their cubes
is 10. List all possible values for x + y, separated by

commas.

 Verify the model’s solution by comparing the final
answer with the ground truth

-5,1,4

Formal Reasoning Meets LLMs: Towards Al for Mathematics and 18
Verification



Reinforcement Learning on Verifiable
Problems

/ Solution: ... \bOXGd{-5, 1 g T Problem: Suppose that the sum of the squares of two
4} < complex numbers x and y is 7, and the sum of their cubes
x " is 10. List all possible values for x + y, separated by

Solution: .. .\bOXGd{-Z, commas.

6}

 Verify the model’s solution by comparing the final
answer with the ground truth

-5,1,4

Formal Reasoning Meets LLMs: Towards Al for Mathematics and 19
Verification



Reinforcement Learning on Verifiable
Problems

M)
J Solution: ... \bOXGd{-5, 1 Y Problem: Suppose that the sum of the squares of two
Reward 4} < complex numbers x and y is 7, and the sum of their cubes
x " is 10. List all possible values for x + y, separated by

Solution: .. .\bOXGd{-Z, commas.

6

Feedback

 Verify the model’s solution by comparing the final
answer with the ground truth

* RL algorithms such as GRPO optimize the model
to achieve high rewards

* Popularized by DeepSeek-R1Guo etal., 2025]
-5,1,4

Formal Reasoning Meets LLMs: Towards Al for Mathematics and 20
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Reinforcement Learning on Verifiable
Problems

ACM A.M. Turing Award Honors Two Researchers Who Led the
Development of Cornerstone Al Technology

Andrew Barto and Richard Sutton Recognized as Pioneers of Reinforcement
Learning

New York, NY, March 5, 2025

Dr. Richard Sutton Andrew Barto

. | ! |
fas
> - J
;I;- “
- -
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Verification

21



Reinforcement Learning on Verifiable
Problems

Reward

—

v
X

—

Solution: ... \boxed{-5, 1,

~_

4}
Solution: ...\boxed-2,
6}

Feedback

> <
A/

 Verify the model’s solution by comparing the final

answer with the ground truth

* RL algorithms such as GRPO optimize the model
to achieve high rewards

* Popularized by DeepSeek-R1Guo etal., 2025]

* The solution must be verifiable, e.g., w/
numeric answers. Not applicable to proofs?

Formal Reasoning Meets LLMs: Towards Al for Mathematics and

Verification

Problem: Suppose that the sum of the squares of two
complex numbers x and y is 7, and the sum of their cubes
is 10. List all possible values for x + y, separated by
commas.

-5,1,4
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How LLMs are Trained to Solve Math
Problems?

 State-of-the-art math LLM = strong pretrained model + two post-training
techniques + marvelous engineering

« Supervised finetuning (SFT): “Good data is all you need!”

* Reinforcement learning (RL): “Verifiability is all you need!”

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
Verification
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How LLMs are Trained to Solve Math
Problems?

 State-of-the-art math LLM = strong pretrained model + two post-training
techniques + marvelous engineering

« Supervised finetuning (SFT): “Good data is all you need!”

* Reinforcement learning (RL): “Verifiability is all you need!”

 Will Al soon “solve mathematics”?

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
Verification
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Gap 1: Pre-college Math -> Advanced Math

 Existing successes are mostly on pre-college math, e.g., AIME, IMO
» LLMs struggle with more advanced math, e.g., mathematical research

W Terence Tao
l‘k Ltaotmathstodon. xXyz

| have played a little bit with OpenAl's new iteration of #GPT, GPT-

ol, which perfarms an initial reasoning step before running the LLM
It is certainly a more capable tool than previous iterations, though still
struggling with the most advanced research mathematical tasks.

~Z EPOCH Al

« 03’s FrontierMath results come with caveats Clarifying the Creation and Use of
the FrontierMath Benchmark

We clar 'y hal Cosed commiss cred Cooch Al Lo produces 300 ek

* How to solve problems w/o numeric answers?

questions T the Frantirsbath Bencbmsark, They o These and havsa
deanns e the statarants ane aacticns, axsapt tae a BE0-questian hnldsut

]

Formal Reasoning Meets LLMs: Towards Al for Mathematics and o5
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Gap 2: Guessing Answers -> Writing Proofs

» LLMs struggle to generate valid proofs

to be quite a big one. For example I was very unimpressed by the ChatGPT answers to the
H/\> PUT ﬁ""a“’m' recent Putnam exam posted hers — as far as I can see only question B4 was answered
Qj/ Mathemetical Competition adequately by the machine, most other answers are worth one or two out of 10 at most. So

I was expecting this dataset to remain pretty unattackable for a couple of years.

[Kevin Buzzard “Can Al do maths yet? Thoughts from a mathematician”
2024]

Formal Reasoning Meets LLMs: Towards Al for Mathematics and o6
Verification



Gap 2: Guessing Answers -> Writing Proofs

» LLMs struggle to generate valid proofs

Williar Lowell

(P PUTNAM

/+ Mathematical Competition

N

', /,-"Q}
< MAA

MATHEMATICAL ASSOCUETION OF AMERCA

to be quite a big one. For example I was very unimpressed by the ChatGPT answers to the
recent Putnam exam posted hers — as far as I can see only question B4 was answered
adequately by the machine, most other answers are worth one or two out of 10 at most. So
I was expecting this dataset to remain pretty unattackable for a couple of years.

[Kevin Buzzard “Can Al do maths yet? Thoughts from a mathematician”
2024]

tors, we evaluated several state-of-the-art reasoning models on the six problems
from the 2025 USAMO within hours of their release. Our results reveal that all
tested models struggled significantly, achieving less than 5% on average. Through

[Petrov et al. "Proof or Bluff? Evaluating LLMs on 2025 USA Math Olympiad"
2025]

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
Verification
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Gap 2: Guessing Answers -> Writing Proofs

» LLMs struggle to generate valid proofs

Yo vl show than i

abe>0 anc alx 1. (36)
tren
1 | | a i71
pat (5
T T b3 a ,

Thera gre several ways 10 prove thisinequality, One vey nea: method is 1 wse the wdl-known Insguality
c4+b>2vch, (8]

tegethe wth (he fad that ab- 1, (fevy somedt sohdon i wccrplable.) We now cemribe ane complote souton

Step 1. Apply the AM-GM Inequelity to the Denominators

t tthef t
1 g
a0
cAla+)) Nt
\ r /2%
€ ( 7 &V Ay, W waw
1 1 0
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| {4}4
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LLMs Alone are Not Enough

» Current math LLMs rely heavily on data and verifiability

» Data scarcity
 Limited to data-rich domains, e.g., pre-college math
« Cannot tackle advanced math or proofs

 Lack of verifiability
 Solutions can only be evaluated by comparing with the ground truth
« Limited to problems with numeric solutions, e.g., GSM8K, MATH
« Not applicable to most problems in advanced math

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
Verification
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Formal Mathematical Reasoning

Our position paper
Mathematical reasoning grounded in formal systems, e.g.,
* First/higher-order logic

« Dependent type theory
« Computer programs & formal specifications

Formal environments can verify proofs and provide automatic feedback
+ Verification enables rigorous evaluation of reasoning
 Learning from feedback mitigates data scarcity

Integrating formal reasoning and LLMs’ informal reasoning

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
Verification

30



The Missing Ingredient: Formal Reasoning

Formal Mathematical Reasoning:
A New Fronticrin Al

Kalyu Yang', Gabriel Poesia’, Jingxuan He",
Wenda Li', Kristin Lauter’, Swarat Chaudhuri’, Dawn Song®
"Meta FAIR, "S:antord University, "UC Berkeley, *Uriversity of LEdinburgh, *UT Austin

[Yang et al. "Formal Mathematical Reasoning: A New Frontier in Al"
2024]
* Mathematical reasoning grounded in formal systems, e.g.,
* First/higher-order logic, dependent type theory
« Computer programs & formal specifications

* Formal systems can verify proofs and provide automatic feedback
* Learning from feedback mitigates data scarcity
* Verification enables rigorous evaluation of reasoning

* We need to integrate formal reasoning with informal reasoning by LLMs

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
Verification
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Proof Assistants (Interactive Theorem
Provers)

« Programming languages for writing formal math and software

W )
A , /I\ ’
N )7 \ :]\71 \
[Nighow ot &, Isabelle, 2002) (Barmas ot @, CoOQ. 1597 [ce Moum et &, Lean, 2015)
nduclive Nal wlere
b Lo RO Define natural numbers
de® add [m n 1 MNot] Naz 1=

NATCh N wiTh

Define addition

SUCZ N => _fucc 13dd A nt)

theoem odd_2crc In : Mat) & odd Jacro n = n = by
INAUCTLdN N With
ey == Ml
3ecc 1 ih == simp [add, ih)

“'j:d:::;;;: ;.;;;Q:Iu o Not) & a0C {.suck m) 1 = JSucC (odd m ) o= Dy State and prove theorems abom
e " natural number addition

Thenrsm A1 oo (B m : Nar) @ ancmn = add " n =2 hy
indection n <;> s.np [add, odd zerc)

cimp [, Bod_suce e.g., (1 + b = b + (1

Formal Reasoning Meets LLMs: Towards Al for Mathematics and 30
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Formalizing Mathematics in Lean

Lean file

inductive Nat where
| zero @ Nat
| succ : Nat = Nat

def add (m n : Nat) : Nat :=
match n with
| «2EBro =>m
| .succ n' => .succ (add m n")

theorem add_zero (n : Nat) : add .zero n =n := by
induction n with
| zero => rfl
| suce n ih => simp [add, 1ih]

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
Verification
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Formalizing Mathematics in Lean

Proof tree

/

n:N

add00=0

rfl

.

¥

Lean file

ﬂ\\\\\ inductive Nat where

Local context zero @ Nat
FHaddOn=n ~ Goal

succ : Nat - Nat

def add (m n : Nat] : Nat :=
match n with

L2EBTU =>m
LSucc n' => .succ ladd m n")

Tactic
induction
n n:N
ihaddOn'=n’
Fadd 0 (n'+1) = n’+1
simp [add, ih]

¥

theorem add_zero (n : Nat) : add .zero n =n := by
induction n with
zero => rfl
suce n ih => simp [add, ih]

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
Verification
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Formalizing Mathematics in

Proof tree

/

n:N
FaddOn=n ~ Goal

\

Local context

add00=0

rfl

.

¥

Tactic
induction
n n:N
ihaddOn'=n’
Fadd 0 (n'+1) = n’+1
simp [add, ih]

¥

Lean file

Lean

inductive Nat where
zero @ Nat

| succ : Nat - Nat

def add (m n : Nat) : Nat :=
match n with
«2Erg =>m
.succ n' => .succ (add m n")

theorem add_zero (n : Nat) : add
induction n with

| zera => rfl

suce n ih => simp [add, ih]

+ZETOD N

Formal Reasoning Meets LLMs: Towards Al for Mathematics and

Verification
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Formalizing Mathematics in Lean

Proof tree

/

n:N

\

Local context

FaddOn=n ~ Goal
Tactic
induction
Hadd00=0 n n:N
ih:addOn’=n’

rfl

.

v

Fadd 0 (n’+1) = n’+1

simp [add, ih]

¥

Lean file

Project

inductive Nat where
| zero @ Nat
| succ : Nat - Nat
def add (m n : Nat) : Nat :=
match n with
| «2Brg =>nm
| .succ n' => .succ (add m n*)
theorem add_zero (n : Nat) : add
induction n with
| zero => rfl

| suce n ih => simp [add, ih]

+ZETOD N

N\

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
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Example of Al + Lean: AlphaProof

 Large-scale search and reinforcement learning using feedback from Lean

Train
Informal | — Formal &% . Formal
problems s Formalize problems - Search pl’OOfS
1M Formalizer ~100M Solver
network network
. AlphaZero .

[Google DeepMind "Al achieves silver-medal standard solving International Mathematical Olympiad problems"
2024]

Formal Reasoning Meets LLMs: Towards Al for Mathematics and

Verification 37



Al Meets Formal Mathematics

theorem exists_infinite_primes

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
Verification

in:?

: 3 p, n

p A

Prime p

38



Al Meets Formal Mathematics

« Theorems and proofs are
represented formally in Lean r | S i
theorem exists_infinite_primes (n : N) : p, n=pa Prime p

« Lean can check if the proof is Theorem
correct. No room for hallucination @ proving

let p = minFac (n !
have f1 : n + 1 m 1 1= ne_of_gt <] succ_Lt_succ <] factorial_pos _
have pp : Prime p := minFac_prime f1

have np : n s p =

__{}_fr\\J "fr le_of_not_ge fun h =>
v have h: @ p n i= dvd_tactorial (minFac_pos _) h

have h: : p 1 := (Nat.dvd_add_iff_right h:).2 (minFac_dvd _)
pp.not_dvd _one h:
(p, Pp, pp)
Formal Reasoning Meets LLMs: Towards Al for Mathematics and 39
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Al Meets Formal Mathematics

-~

Theorem 1. There erists an infinite number of primes.

Proof. Let n be an arbitrary positive integer, and let
p € Z%F be a prime factor of n!'+ 1. We can derive p > n
by noting that n! + 1 cannot be divided by positive
integers from 2 to n Since n is arbitrary, we have
proved that the number of primes is infinite. C

\.\ P

M SRR R R R R R R R R R R e e e

Informal math

/

~

let
have
have
have
le

W S SRS S S S e e e e ——

\ .:p'
N\
-

p = ml

fl:n + 1 m 1 := ne_of_gt <| succ_Lt_succ <] factorial_pos _

theorem exists_infinite_primes (n : N) : 3 p, n=p a Prime p

@ Theorem
proving

nFac (n ! « 1)

pp : Prime p := minFac_prime f1l

np : nsp:=
_of_noct_ge fun h =>

have h:
have h:
pp.not
ne, Pp)

p n i= dvd_ftactorial (minFac_pos _) h

o 1 := (Nat.dvd_add_iff_right h:).2 (minFac_dvd _

dvd _one h:

Formal theorem statement and proof

Formal Reasoning Meets LLMs: Towards Al for Mathematics and

Verification
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Al Meets Formal Mathematics

T ———————————— — -~ T T ——————————————————— — b

7’ ~ _ ) ) ) ~
/ \ 7 theorem exists_infinite_primes (n : K) : 3 p, n = p a Prime p N
| | \
I . ' Theorem |
! . o | ! proving |
| Theorem 1. There erists an infinite number of primes. I I |
I . - I Tp :=m ; L |
I Proof. Let nn be an arbitrary pusitive integer, and let | | .lf A l“ .rrer in _) ’ B _ ‘ |
| p € Z% be a prime factor of n! + 1. We can derivep > n | E> : have f1 : n v 1 m 1 ._—n:_-.)l_gl <| succ_lt_succ <| factorial_pos _ |
: by noting that n! + 1 cannot be divided by positive | I have pp : Prime p := minFac_prise f1

integers from 2 to no Sinee n is arbitrary, we have | have np : n s p := l
I proved that the number of primes is infinite. 0O ) Auto- ! le_of_net_ge fun h => l
| I fOfmalizationl have h: @ p n i= dvd_ftactorial (minFac_pos _) h I
| I | have h: : p | 1 := (Nat.dvd_add_iff_right hi).2 (minFac_dvd ) |
| ] | pp.not_dvd_one h: |
\ v ! /

P, PP, PR)
\ Py . d ’
Informal math Formal theorem statement and proof
Formal Reasoning Meets LLMs: Towards Al for Mathematics and 41
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Al Meets Formal Mathematics

theorem exists_infinite_primes (n : N) : 3 p, n=< p a Prime p

@ Theorem
proving

let p = minFac (n ! + 1)
have f1 : n + 1 m 1 1= ne_of_gt <] succ_Lt_succ «<| factorial_pos
have pp : Prime p := minFac_prime f1

have np : n s p =
le_of_nct_ge fun h =>

have h: @ p n i= dvd_ftactorial (minFac_pos _) h
have h: : p 1 := (Nat.dvd_add_iff_right h:).2 (minFac_dvd _)
pp.not_dvd_one h:

(p, PR, PR)

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
Verification
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LLMs for Theorem Proving

« We can train LLMs to generate either a:Type u_1
_ : Proof state c+¢.8eta
* Next steps in the proof (a.k.a. tactic)

Fsnt=tns
« Complete proofs

* Proof steps can be assembled into complete
proofs using search algorithms

* How to generate the next step?

ext x OR extx
simp

Proof step constructor <;> intros <;> simp_all

Full proof

Formal Reasoning Meets LLMs: Towards Al for Mathematics and 43
Verification



LLMs for Theorem Proving

« We can train LLMs to generate either a:Type u_1
_ , Proof state gt:Seta
* Next steps in the proof (a.k.a. tactic)

Fsnt=tns
« Complete proofs

* Proof steps can be assembled into complete
proofs using search algorithms

* How to generate the next step?
* Learn from human-written formal proofs

ext x OR extx

I It‘:L‘.ll.‘;;‘z': f-oommun itys teorth/pfr m ImperialCollegalon I Simp
ma | ,
vt b e 210 P 2z 3 don/FLT i > 8i
4 v inestrian et g = Proof step constructor <;> intros <;> simp_all
Full proof
Formal Reasoning Meets LLMs: Towards Al for Mathematics and 44
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Machine Learning for Predicting the Next
Step

e Classical ML algorithms, e.g., KNN [Gauthier et al. "TacticToe: Learning to Prove with Tactics" 2018]

* Deep neural networks

[Huang et al. “GamePad: A Learning Environment for Theorem Proving” ICLR 2019]

[Yang et al. “Learning to Prove Theorems via Interacting with Proof Assistants” ICML 2019]

[Yang et al. “Learning to Prove Theorems via Interacting with Proof Assistants” ICML 2019]

[Bansal et al. "HOList: An Environment for Machine Learning of Higher-Order Theorem Proving" ICML
2019]

LLM [Polu and Sutskever "Generative Language Modeling for Automated Theorem Proving"
’ S 2020]
[Lample et al. "HyperTree Proof Search for Neural Theorem Proving" NeurlPS 2022]
[Han et al. "Proof Artifact Co-training for Theorem Proving with Language Models" ICLR
2022]

Formal Reasoning Meets LLMs: Towards Al for Mathematics and 45
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LeanDojo

& A | @ LeanDojo: Theorem Proving with
"‘ 4 M’ (, ﬁ Retrieval-Augmented Language Models

Laby gy

: ' Kaiyu Yang', Aidan M. Swope®, Alex Gu®, Rahal Chalamala’, Peiyvang Song*,
., A Shixing Yu?, Suml Godily Ryan Prenger, Anima Anandkumar’ =
; WCaliech, SNVIDIA, *MIT, *UC Sinta Barbaray, “UT Austin

hitps://lesmiojo.arg

[Yang et al. “LeanDojo: Theorem Proving in Lean using Language Models” NeurlPS
2023]

* Previous LLM-based provers are private

« LeanDojo provides open-source
« Data for training and evaluation
« Trained model checkpoints
* Tools for extracting data and interacting with Lean

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
Verification
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LeanDojo

| VI

Lean

Data
extraction

g

Formal Reasoning Meets LLMs: Towards Al for Mathematics and

LeanDojo Benchmark )
98,641 theorems and proofs
217,639 tactics

129,162 premises )

Verification
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LeanDojo

| VI

Lean

Data
extraction

g

Formal Reasoning Meets LLMs: Towards Al for Mathematics and

LeanDojo Benchmark )
98,641 theorems and proofs

217,639 tactics

129,162 premises )

Verification

Training ¢
40

Machine learning model
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LeanDojo

Lean

Data
extraction

Prove theorems by Interaction

~

LeanDojo Benchmark

- >

« 217,639 tactics
\’ 129,162 premises )

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
Verification

» 98,641 theorems and proofs Training> _'_;

Machine learning model
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Retrieval-Augmented Prover (ReProver)

« Given a state, we retrieve premises from the set of all accessible premises

State k:N
Foged((k+1)% (k+1))(k+1)=k+1

All accessible premises
in the math library

thecrenr mod_self (n : nat) : 2 % 2

Lhooren ged zero left (x : pat) : ged O x X

33K an average

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
Verification



Retrieval-Augmented Prover (ReProver)

« Given a state, we retrieve premises from the set of all accessible premises

k:HN
Foged((k+1)% (k+1))(k+1)=k+1
All accessible premises

in the math library
theorer mod_self (n : nat) : a % a = C ‘_'{M_'

theoren ged_zere_left (x : pat) : ged 0 X ~ X Encader

State

Maximum
33K an average . X cosine similarity

def god : onal o nal 0 nat ‘ Encoder

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
Verification



Retrieval-Augmented Prover (ReProver)

« Given a state, we retrieve premises from the set of all accessible premises

All accessible premises
in the math library

k: N
- ged ((k+1)% (k+1)) (k+1) =k + 1

State

thecren mod_gelf (n :

def god : onat o nal

nat)

Lhooren ged zero left (X

. pat)

ra i

33K an average

© ged O x

[ LEncoder —
x|

thecrem mod_1t (x :

e N

T

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
Verification

nat) {y : nat} (h : 0 <
Maximum theorem mod_self (n :

nat) : afn 0

cosine similarity thecrem mod_eq_of_1t {a b : nat} (h :
Thecrem zerc_med (b :

nat) : 0% b =20

Retrieved premises

a <

52



Retrieval-Augmented Prover (ReProver)

« Given a state, we retrieve premises from the set of all accessible premises
« Retrieved premises are concatenated with the state and used for tactic

generation

All accessible premises
in the math library

State k:HN

- ged ((k +1) % (k + 1)

ekt [

thecren mod_gelf (n :

Lhooren ged zero left (X

nal ' nal

def god -

nat)

' natl

.

. pat)

33K an average

a

© ged O

X

—{ Encoder >—
x

Maximum
cosine similarity

e N

Formal Reasoning Meets LLMs: Towards Al for Mathematics and

Verification

thecrem mod_1t (x : nat) {y : nat} (h : 0 < y) %y <y
thecrem mod_self (n : nat) ' afn
thecrem mod_eq of 1t {ab : nat> (h : a<b) :ajib-a
thcerem zere_med (b : nat) : 0O U b =0
Retrieved premises
53



Retrieval-Augmented Prover (ReProver)

« Given a state, we retrieve premises from the set of all accessible premises
« Retrieved premises are concatenated with the state and used for tactic

generation

All accessible premises
in the math library

State k:HN

- ged ((k+1)% (k+1)) (k+1) =k + 1

Encoder-decoder

thecren mod_gelf (n :

Lhooren ged zero left (X
33K an average
' nal

nal ' nal

def god -

nat) @ a %

. pat)

a

© ged O

X

[ LEncoder —
X *I Encoder >—

Maximum
cosine similarity

T

e N

nat)
nat

thecrem mod_1t (x :
Thecrem mod_self (n :

Theoraem mod_oq_of 1t {ab :

Thecrem zerc_med (b : nat

iy : nat} (h : O

by raf%n
nat> (h : a
Yy i 0%bB=0

Retrieved premises

Formal Reasoning Meets LLMs: Towards Al for Mathematics and

Verification

rewrite mod_self

Tactic

<y rxUy<y

< b)

ca b a
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Summary: A Typical Neural Theorem Prover

Proof search

Fadd00=0
n:N
ih;addOn'=n’
Q< Fadd 0 (n'+1) =
S ,
& n’+1
>
$
Fadd00=0
n-N casesn
FaddOn=n n :N
add 0 (n'+1) =
IS '+
+/ n+
(S
6’o
n:N
+ false

N\

n :N

ih:addOn’=n’

/n
- add 0 (n'+1) = ”'e%
n’+1

ih:addOn'=n’
Fadd 0 (n'+1) =

LB&AI context +
goal

@rmal math library

=

™~
o~
'\ 1
"V

Language
model

Tactic

generation

=

________

rw [ih]

4
1
1
1
1
1
1
1
|

: linarith

________

Tactic

suggestion

S

-———

———

/
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Goedel-Prover

A New Frontier in Open-source Automated Theorem Proving

Yong Lin*1 Shange 'ang‘1 Bohan L\‘.-'u2 Jiayun Wu?

Hongzhou Lind Kaiyu Yang“ Jia Li® Mengzhou Xia'

Dangi Chen' Sanjeev Arora'  Chi Jin!
IPrinceton Language and Intelligence, Princetan University

“Tsinghua University, *Amazon, *Meta FAIR, ® Numina

o MiniF2f (Pazsgaz) FarmalNumna (Fass @32)
bo.u LR
-4~ Goscel-Froner-SIT ~#- Cooda-Fraver-SIT
629 - -~ LCeepsass-Sraver-v1.5-HL 625 ~=~ Deepspa<Provere ) b4

[UR LR

“ararmance ()
N
N
: |
“erormance (%)
=N
2
=

50.0 sn.a
{78 125
5.0 450
P 1 7 3 4 5 6 T & 7 o 1 2 3 4 6 & 7T & 8
Picce Heraton Mocel lieraton

Flgure 7. Ierative Petormance o0 mIndFZF Fgura 2. lterative Par'oeranca on FormalNuming



Limitations

 LLMs work well in domains with abundant data, but novel mathematical research
IS data-scarce
« The “action space” in proving mathematical theorems large
* Go: 19x19 board. Math: infinite?
« Hard to cover the space uniformly by human-created data
« Exploration is difficult in reinforcement learning



Taming the Action Space in Proving Inequalities

[Li et al. "Proving Olympiad Inequalities by Synergizing LLMs and Symbolic Reasoning" ICLR

2025]

Given a, b, ¢ three reals, prove that
ab +bc +ca <a?+b%+c?

Neural network

—_— +

Symbolic tool

Given a, b, ¢ three reals, prove that
ab+bc +ca<a?+b*+c?

v Apply AM-GM
Lo, o, s, T T T 1
: 2a2+b2+262+b23a2+b2+c2 |
I 2 I
L Ny Y |
| Simplify
_______ y_______

Formal Reasoning Meets LLMs: Towards Al for Mathematics and

Verification



Infinite Proof Search Space

Problem: If a, b, c are positive reals and a® + b> 4+ ¢? = 1, then
1 4 1 N 1 < 1 4 1 N 1
a’l+2 b2 +2 242 6ab+c? 6bc+a? 6ca+ b?

Ntu

1 1

AM-GM (1)

&

+
1 1 1 1 1 242 p242 c2+2 6ab+6bc+6ca+a2+b2+c2

/\

Rewrite

2\/2a * 2\/2[) 2\/2c 6ab + c2 6bc+a2 * 6ca + b?
AM-GM (2)
1 1 1 1 1 1

/ \‘
+ + < + +
30+ 202+ 2 3b*+2a2+2c2  3c?+2a2+2b2  Gab+c2  6bc+a®  6ea+ b2
K
Lol L <3(6ab + A)6be + a¥)6ab + AT
a C C a a C
a?+2 b2+2 c2+2
A

SN

>10,000 potential one-steps options



Manually Checking o1’s Proofs

Step 7 1. Recall the denlity for o' 4+ i
Using A Step 3: Analyz
Step ©: Evaluate at Equality

Celine the functcr

lest the inecLainy whan o o

1. Computa Each Factor

Btznoo ol t

Step 8

veboe of the g
et 7. Compuia tha Froduct

] Comt
Conclusion el )
Step 4: Evaluat

I 2 - 2
Ala 4 f 1 fir sl Al tha iaasualny Bakde with acy wlity waen a

ol-preview 03-mini DeepSeek-R1 Gold medalists

#Solved Olympiad-level Inequalities 0/20 3/20 4/20 15/20




Tactic Generation & Pruning

* We categorize the steps in inequality proving into two types:
1) Scaling: substitute the given inequality using a known lemma (e.g., Cauchy-
Schwarz)
2) Rewriting: transform the given inequality into an equivalent form

 We enumerate and prune the scaling tactics using symbolic tools

_____________________________________

Enumerate and prune all
. patterns using symbolic tools

Given a, b, c three reals, prove that

ab + bc + cd < a? + b? + ¢?

A

Pafttern match

Cauchy\ Schwarz_left_sqrt

_____________________________________



Tactic Generation & Pruning

* We categorize the steps in inequality proving into two types:

1) Scaling: substitute the given inequality using a known lemma (e.g., Cauchy-
Schwarz)

2) Rewriting: transform the given inequality into an equivalent form (e.g., fraction
reduction)

_________________________________________________________

Let's rewrite the inequality \( ab + bc + ca\leq a2 + b2 +
c/2\) step by step according to the rule \( xy + yz = y(x + z)

\).
p/ P P
ab+bc+ca<a“+b"+c ### Step 1: ...

e B » ### Conclusion: E

Given a, b, ¢ three reals, prove that

| Prompt: You shquld rewrite the inequality given by The inequality \( ab + bc + ca \leq a2 + b2 + ¢*2 ) can be
1 the user accordinlg to the rule x*y+y*z = rewritten as:

| Y (x+z) ) \
: Please redson step by step a(b-a)+b(c-b)+c(a-c) Veq O
-RPreblenr problemy - - - - - - - - - ——-——-———-— - \]

_________________________________________________________



LIPS: LLM-based Inequality Prover with Symbolic Reasoning

« Summary: we develop an inequality proving system, where LLM and symbolic
tools are used for rewriting and scaling the current inequality, respectively

Given a, b, ¢ three reals, prove that
ab +bc +ca <a’+b?+c? Tactic generation & pruning Goal filtering & ranking
, S N e oerear R
! scale ' Scalin , ! ', \/(2a2+b2)(2c2+b2) <a’+b+c?
;— ———————— 'Ca'lrchy-_SchwaTz_3vars ' g ab +bec + ca < 33 [a2b2c? | : , ;
1 \/(2a2+b2)(2c2+b2)§a2+b2+c2 1 : \/(2(12+b2)(262+b2)<(12+b2+62 : : 2.3ab +3bc+3ca§(a+b+c) :
| : 1 - : 1 :
L oo oo o oo oo oo oo oo oo oo e e e e e omm e o L aae aas 1 1 nnn 1
1 o o o 1 1 o 1
-| scale AM_GM_2vars \___Symbolic enumerating and pruning S LM ranking
A S e
2a“+b“+2c*+b
: a > ¢ <a’+b®+c? : | Rewriting : : a—b—-l—bc—-l—ea—_ééa—-l—b-)i—la-b—-l—&z :
1 1 I |
e l : 3ab +3bc +3ca<(a+b+c)’ ! | abtberteca<aValiie !
1 llm simplify E a(b—a)+b(c—b)+c(a—c)$0 i E E
_______________ | "EE mEwm I l I
R R Ry WL L N S St
b e o= = = = _l _______ |
y : Proof step :- ----- : : Neural reasoning E----_-: : Symbolic reasoning
L T 1




Experimental Results
* Our system LIPS surpasses IMO Gold Medalists in inequality proving

#Solved Olympiad-level Inequalities” 4/20 15/20 16/20

* Problems are collected from IMO competitions, national team selection test, training quizzes.

* LIPS achieves SoTA performance across various competition-level datasets

Dataset # of Problems Neural Provers Symholic Provers LIPS A
Dsp  McTs Awrs’ | Cap! Muma!

ChenNEQ 41 0.0 17.0 - mn7 H8.2 95.1 244+
MO-INT 20 0.0 15.0 50.0 60.0 60.0 80.0 20.0t
S67NEQ 100 0.0 4.0 - 54.0 52.0 63.0 14.07

Total 161 0.0 3.6 - 59.0 57.1 76.3 17.37

t The code of A1ps has not been publicly available, we only include its originzlly reported results,
t Cap and M a onlv output verification results, they cannot produce hurnzan readable proofs.



Some Interesting Findings

LIPS finds novel proof paths expected to be impossible by human experts

Problem: Lel a, b, ¢ be three positive reals. Prove that if abe = 1, then

9 ] )
d )

a+b+cc>a+b+c

Z g Generated by LIPS

Formal solution:

I A | (! = 1) +
+ 2+ pL k
scale NZC_AM_GM (U := 2) - a)
ale NEQ_AM_GM (W := 2) (v :=- <)
crale (u = 2) ( = D)
: 11l 1L rang
1n_siwolify ... 3/2 = a*2/2 = b 2/2 242
Evan Chen 11m_rearzange | 1= 3/2) (right := a*2/%2 + b~2/2 2/2)
scale N \ M : : re (u 3= 272) ( 1= b 2/2) ..
(IMO COaCh fOI’ Team USA) 1lm_simzlify ... (a»2xc) "2 [ E
1lm _simzlify ... =1 /) 8
| 4

“AM-GM alone is hopeless here...”
LIPS succeeds with exactly AM-GM

Source: https://web.evanchen.cc/handouts/Ineg/en.pdf

I


https://web.evanchen.cc/handouts/Ineq/en.pdf
https://web.evanchen.cc/handouts/Ineq/en.pdf
https://web.evanchen.cc/handouts/Ineq/en.pdf
https://web.evanchen.cc/handouts/Ineq/en.pdf
https://web.evanchen.cc/handouts/Ineq/en.pdf
https://web.evanchen.cc/handouts/Ineq/en.pdf

Takeaway

« Challenge in theorem proving: How to efficiently explore an infinite action space?
* Insights on a specific mathematical domain can be helpful

« Open problem: generalizing across different domains?



Theorem Proving

theorem exists_infinite_primes (n : N) : 3 p, n=<p a Prime p

@ Theorem
proving

let p = minFac (n ! + 1)
have f1 : n ! + 1 = 1 := ne_of_gt <| succ_Llt_succ <] factorial_pos
have pp : Prime p := minFac_prime f1
have np : n s p =
le_of_nct_ge fun h =>
have h: @ p n ! = dvd_tactorial (minFac_pos _) h
have h: : p 1 := (Nat.dvd_add_iff_right h:).2 (minFac_dvd _)
pp.not_dvd_one h:
(p, PR, PR)

Formal Reasoning Meets LLMs: Towards Al for Mathematics and
Verification



Autoformalization

T ———————————— — -~ T T ——————————————————— — e

s N . . : . ~
/ \ s theorem exists_infinite_primes (n : N) : 3 p, n=<=p a Prime p N
' [ ' \
I I |
I I I |
| Theorem 1. There erists an infinite number of primes. I I |
I I t D := minFac (n ! + 1
I Proof. Let n be an arbitrary pusitive integer, and let | | 1'9" F" .n'mFar !n 1) _ _ :
P € Z% be a prime factor of n'+ 1. We can derivep > n | |:> : have f1 : n +1m] ::_n:_of_vgl <| succ_lt_succ <| factorial_pos _ |
I by noting that n! + 1 cannot be divided by positive | I have pp : Prime p := minFac_prime f1

integers from 2 to no Since n is arbitrary, we have | have np : n s p := l
I praved that the number of primes is infinite. O Auto- ! le_of_nct_ge fun h => I
| I formalization' have h: @ p n ! = dvd_tactorial (minFac_pos _) h I
| | | have h: : p 1 := (Nat.dvd_add_iff_right h:).2 (minFac_dvd _) I
I ) | pp.not_dvd_one h: |
\ \ t: , PP, D) ,

. ’/ . P. PR, FP y;

Informal math Formal theorem statement and proof
[Wu et al. "Autoformalization with Large Language Models" NeurlPS
2022]
Formal Reasoning Meets LLMs: Towards Al for Mathematics and 68
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Autoformalizing Theorems and Proofs

Theorem 1. There exisis an infinite number of primes.

Proof. Let n be an arbitrary positive integer, and let
p € ZT be a prime factor of n!—1. We can derive p > n
by noting that n! <+ 1 cannot be divided by positive
intepers from 2 to n. Since n is arhitrary, we have
praved that the number of primes is infinite. M

Informal

theorem exists_infinite primes (A : M) ¢ 3 p, n=p a Prine p ¢
let p = minFac in ! + 1)

have f1 : n ! + L » 1 := ne_of_gt <| succ_lt_succ «| tactorial_pos _

have pp : Prime p := minFac_prime f1
have np : n=sp =
le_nf_not_ge fun h ==
have he : p | n ! i= dvd_factorial IminFac_pos _! h
have h> : p | 1 (Nat.dvd_add_iff_right h:}.2 [minFac_dvd _)
pp.not_dvd_one h:
{pv rp, CP}

Formal
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Autoformalizing Theorems and Proofs

» Autoformalizing theorems: informal theorem — formal theorem

Theorem 1. There exists an infinite number of primes.

Proof. Let n be an arbitrary positive integer, and let
p € ZT be a prime factor of n!—1. We can derive p > n
by noting that n! <+ 1 cannot be divided by positive
intepers from 2 to n. Since n is arhitrary, we have
praved that the number of primes is infinite. M

Informal

theorem exists_infinite_primes (n :t W) : 3 p, n=p A Prine p

let p = minFac in ! + 1)

have f1 : n ! + L = 1 := ne_of_gt <| succ_Lt_succ «| tactorial_pos _

have pp : Prime p := minFac_prime f1
have np : n=sp =
le_nf_not_age fun h ==»
have he : p | n ! i= dvd_factorial IminFac_pos _! h
have h> : p | 1 := (Nat.dvd_ada_iff_right h:).2 [(minFac_dvd _)
pp.not_dvd_one h:
{p. rp, CP?

Formal
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Autoformalizing Theorems and Proofs

» Autoformalizing theorems: informal theorem — formal theorem
 Autoformalizing proofs: informal theorem & proof + formal theorem — formal proof

theorem exists_infinite primes (n : W) : 2 p, n= p A Prine p :

Theorem 1. There erists an infinite number of primes. let p := minFac {n ! + 1)
have 1 : n ! + L = 1 := ne_of_gt «<| succ_Lt_succ «| factorial_pos _
Proof. Let n be an arbitrary positive integer, and let have pp : Prime p := minFac_prime f1
p € ZT be a prime factor of n!—-1. We can derive p > n have np : n = p :=
by noting that n! + 1 cannot be divided by positive Lle_of_not_ge fun h => .
intepers from 2 to n. Since n is arhitrary, we have ENE I s R = d\'d”fa‘;tofiél.'m;"Fa(' pos r.' .
. . . o o e have h> : p | 1 := (Nat.dvd_add_iff_right h:].2 [(minFac_dvd _)}
praved that the number of primes is infinite. n openot_dvd_one h:
{pv rp, cp}
Informal Formal
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Hard to Evaluate Autoformalized Theorems

No reliable automatic evaluation

theorem exists_infinite primes (A : M) : 3 p, n=p A Prine p :
Theorem 1. There exisis an infinite number of primes.

Informal Formal
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Hard to Evaluate Autoformalized Theorems

No reliable automatic evaluation

Alternatives

theorem exists_infinite_primes (n : M) : 3 p, n < p A Prime p

theorem exists_infinite _primes (n : W) : 3 p, n=p A Prine p
Theorem 1. There erists an infintte number of primes.

Informal Formal
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Hard to Evaluate Autoformalized Theorems

No reliable automatic evaluation

Alternatives
theorem exists_infinite_primes (n : M) : 3 p, n < p A Prime p
theorem exists_infinite_primes (n : K) : Prime n - 3 p, n = p A Prime p

theorem exists_infinite_primes (n : M) : 2 p, n=p & Prine p :
Theorem 1. There erists an infintte number of primes.

Informal Formal
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Hard to Evaluate Autoformalized Theorems

No reliable automatic evaluation

Alternatives
y EqUIvalence CheCkIng IS InfeaSIble theorem exists_infinite_primes (n : M) : 3 p, n<p A Prime p

theorem exists_infinite_primes (n : K) : Prime n - 3 p, n = p A Prime p

I

theorem exists_infinite _primes (n : W) : 3 p, n=p A Prine p
Theorem 1. There erists an infinite number of primes.

Informal Formal
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Hard to Evaluate Autoformalized Theorems

No reliable automatic evaluation

Alternatives
° EqUIvalence CheCkIng IS InfeaSIble theorem exists_infinite_primes (n : M) : 3 p, n<p A Prime p
¢ Human evaluatlon IS eXpenSIVe theorem exists_infinite_primes (n : K) : Prime n - 3 p, n = p A Prime p

* Proxy metrics (e.g., BLEU) are inaccurate I

theorem exists_infinite primes (A : M) : 3 p, n=p A Prine p :
Theorem 1. There exisis an infinite number of primes.

Informal Formal
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Reasoning Gaps in Informal Proofs

* Informal proofs have reasoning gaps
 Explicit gaps: “left to the reader”

 Implicit gaps

* Formal proofs must be gap-free

Theorem 1. There exisis an infinite number of primes.

Proof. Let n be an arbitrary positive integer, and let
p € ZT be a prime factor of n!—-1. We can derive p > n
by noting that n! <+ 1 cannot be divided by positive
intepers from 2 to n. Since n is arhitrary, we have
praved that the number of primes is infinite. M

Informal

theorem exists_infinite primes (A : M) ¢ 3 p, n=p a Prine p ¢
let p := minFac {n ! + 1)

have f1 : n ! + L = 1 := ne_of_gt <| succ_lt_succ «| tactorial_pos _

have pp : Prime p := minFac_prime f1
have np : n=sp =
le_nf_not_ge fun h =>»
have he : p | n ! i= dvd_factorial IminFac_pos _! h
have h : p | 1 := (Nat.dvd_add_iff_right h:).2 [(minFac_dvd _}
pp.not_dvd_one h:
{pv rp, CP}

Formal

77



Key Challenges in Autoformalization

 Theorems: No reliable automatic evaluation
* Proofs: Reasoning gaps ubiquitous in informal proofs

Theorem 1. There erists an infinite number of primes.

Proof. Let n be an arbitrary positive integer, and let
p € Z* be a prime factor of n!—1. We can derive p > n
by noting that n! <+ 1 cannot be divided by positive
intepers from 2 to n. Since n is arhitrary, we have
praved that the number of primes is infinite. M

Informal

theorem exists_infinite primes (n : W) : 2 p, n= p A Prine p :

let p := minFac {n ! + 1)
have 1 : n ! + 1L = 1 := ne_of_gt «| succ_Lt_
have pp : Prime p := minFac_prime f1
have np : n=sp =
le_nf_not_ge fun h =>»
have he : p | n ! i= dvd_factorial IminFac_pos _! h

have h : p | 1 := (Nat.dvd_add_iff_right h:).2 [(minFac_dvd _}

pp.not_dvd_one h:
Py PP, BpY

Formal

succ «| tactorial_pos _
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Key Challenges in Autoformalization

 Theorems: No reliable automatic evaluation
* Proofs: Reasoning gaps ubiquitous in informal proofs

Things intractable in general can be made tractable
In a specific domain

Informal Formal
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Euclidean Geometry

An arena for human and machine intelligence

Google DeepMind

AlphaGeometry: An Olympiad-level Al
system for geometry

Euclid (EukAeidng), 300 BC [Trinh et al., AlphaGeometry, Nature 2024]
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Autoformalizing Euclidean Geometry

 LeanEuclid: Benchmark for autoformalizing Euclidean geometry
* 48 from Euclid’s Elements; 125 from UniGeo [Chen et al., UniGeo, EMNLP 2022]
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Autoformalizing Euclidean Geometry

 LeanEuclid: Benchmark for autoformalizing Euclidean geometry

* 48 from Euclid’s Elements; 125 from UniGeo

Proposition 1
Io comstroct an eguilateral tnamgle on a given fmite
sraight line,
C.
D Af B E

Let AE De e given linite suaig 1 cline.

So il i required 0 comtree. wo eguilsteral trigle on
the saraighr-line AR

Let the circle 2C D with center A and radiue AP have
been drawn [Post, 31, and again les the circle ACE with
center 17 and radius fiA have been drawn [Pose. 5. And
L2« the seraight lines 04 and O R have been joirad from
the poimt C', whese the dirdes oot ome another.' w the
pounis A and & (Cespelively) (Pose 1)

And simee the podna A s the eenmer of the cind'c D8,
AC is equal w0 AB [Def, 1.15). Again, since the point
P is the center of the circle CAE, BC is squal to BA
[Def 1 1S). Bat OA was also shown (0 be) ecual to AT
Thus, A 2nd O8 ave cach ecualto A 5. But things aqual
to the same thing are also aqual to ane another [CN 1)
Thus, T A is d50 equal W CF, Thus, the three (sLaigil-
lines) ©A, AE, and BO arc equal o one znother,

Thus, the mangle A8 15 equilateral, 2n0 has boen
consuucted on (e given luite suaight-loe A8, Whids
I5) the very thing 17 wos required 10 de.

Informal theorem, proof, diagram

[Chen et al, UNiGeo, EMNLP 2022]
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Autoformalizing Euclidean Geometry

 LeanEuclid: Benchmark for autoformalizing Euclidean geometry
* 48 from Euclid’s Elements; 125 from UniGeo

Proposition 1

1o comstract an eguilateral tnamgle on a given fmite
sraight line,

C.

Let AE De U given linite straig v-line.

So il i required 0 comtree. wo eguilsteral trigle on
the saraighr-line AR

Let the circle 2C D with ceneer A and madiue AZ have
been drawn [Post, 31, and again les the circle ACE with
center 17 and radius fiA have been drawn [Pose. 5. And
le= the eeraight lines 04 and &R have been joirad from
the puimt C', where the cirdes cut vme another.' w the
pouns A and & (Cespecively) (Post 1).

And simee t™he polng A §s the eenrer of the cind'c O D8,
AC is equal o AB [Def, 1.15). Again, since the point
E s the center of the circle CAE, BC is 2qual to BA
[Def 1 1S). Bat OA was also shown (0 be) ecual to AT
Thus, A 2nd O8 ave cach ecualto A 5. But things aqual
to the same thing are also aqual to ane anather [CN 1)
Thus, O A is 650 equal o CF, Thus, the three (suaigit-
lines) ©A, AE, and BO arc equal o one znother,

Thus, the mangle AE0 15 equalateral, 208 has boen
consuucted on (e given luite suaight-loe A8, Whids
I5) the very thing it wos required 1o de.

Informal theorem, proof, diagram

e 2

[Chen et al, UNiGeo, EMNLP 2022]

theorem propos-tion_1 : ¥ (a b : Point) (AB : Line),
dislnclPoinlsOnLine a b AB -
J ¢ Point, |(c-a) = |(a-b)| & [(c-b)| = |(a-b)|
Ly
euclid_intros

euclid_apply circle_from_points a b as BCD
euclid_apply circle_from_points b a as ACE
euclid_apply intersection_circles BCD ACE as c
euclid apply point on circle onlyif a b ¢ BCD
euclid apply point _cn _circle enlyif b @ ¢ ACE
use ¢

euclid_finash

Formal theorem & proof in Lean
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Autoformalizing Euclidean Geometry

 LeanEuclid: Benchmark for autoformalizing Euclidean geometry
* 48 from Euclid’s Elements; 125 from UniGeo [Chen et al., UniGeo, EMNLP 2022]

First to faithfully formalize proofs in
Euclid’s Elements
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Logical Gaps in Euclid’s Proofs

Elements, Book

Proposition 24

If two triangles have two sides equal to two sides, re
S2ecuvey but (o8e) has the argie enonpassed by the
oyud suaiphtline etz Gas e (Cosrepunding’ an
ge lin he other), then (the fermer wianghe) will alss
have a Base greater than the base (of the latter).

A D
) \

VB

| nv F
C N

Let ABC and DEF be two trionglss having the two
cde AR od AT agpal to the twn Gldee NE and NDE
respectively  (Thae Is), AB (ecuad e« DE, and A” w0
DF. Let them alse have the angle st A greater than the
angh at D, 1 say tha the base BC is also greacer than
the tase K7

Ior sinee engle SAC b grcater thaa asgh EDF,
let langle) EDC, oqual o angle BAC, have heen
onsructed at the poirt D cn the straight-kne DE
[Proo, 1.23). And ket DG be made equal o cither of
AC o DF [Peop. 1.3], and let EG and FG have been
Jeined.

Thesefore, siome A0 5 equad w0 DE awd AC w DG,
the rwo (straighedines) BA AT are aqual 1o the twa
Geraighe-lines) E0. DG, respectively.  Alsc the gk
DAC is eqaal to the angle EDG. Thus the tase BC
is equal to the base EG [Prop 1.4). Again siwe DF
15 equal to UG, angle DU 1s also equal to ange DMG
[Proo, 5] Twas NG (W goaxr thas 107, Thu,
FFC is mach grester than ECF. And since trisnglh
EFG has mghe E7C greater than £G'F, and the greater
gk is subtended by the greaver side [Prop. 1.19], sid
EG (is) thas also greater than £F. But EYV (5) aqual to
BC. Thus, 5C (1s) alio sreaer thay &5,

|, Proposition 24

£ZBAC > LEDF

| AB|
| AC|

C

| DE|
| DF|

—

| BC| > | EF|
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Logical Gaps in Euclid’s Proofs

Elements, Book |, Proposition 24

Proposition 24

If two triangles have two sides equal to two sides, re
SHeCIVEY, DU (06€) has the argle enonpassed by the
oyud suaiphtline etz Gas e (Cosrepunding’ an
ge lin he other), then (the fermer wianghe) will alss
have a Base greater than the base (of the hatter).

A D
) \

VB

3 F o i'
C N

Let ABC and DEF be two trionglss having the two
cde AR od AT agpal to the twn Gldee NE and NDE
respectively  (Thae Is), AB (ecuad e« DE, and A” w0
DF. Let them alse have the angle st A greater than the
angh at D, 1 say tha the base BC is also greacer than
the tase £7.

Ior sinee engle SAC b grcater thaa asgh EDF,
let langle) ED, equal s angle BAC, have heen
onsructed at the poirt D cn the stmight-kne DE
[Proo, 1.23). And ket DG be made equal o cither of
AC o DF [Peop. 1.3], and let EG and FG have been
Jeined.

Thesefore, siome A0 5 equad w0 DE awd AC w DG,
the rwo (straighedines) BA AT are aqual 1o the twa
Geraighy-lines) E0. DG, respectively.  Alsc the gk
DAC is eqaal to the angle EDG. Thus the tase BC
is equal to the base EG [Prop 1.4). Again siwe DF
15 equal to UG, angle DU 1s also equal to ange DMG
[Proo, 5] Twas NG (W goaxr thas 107, Thu,
FFC is mach grester than ECF. And since trisnglh
EFG has mghe E7C greater than £G'F, and the greater
gk is subtended by the greaver side [Prop. 1.19], sid
EG (is) thas also greater than £F. But EYV (5) aqual to
BC. Thas, 5C (18) alio sreaerthay &5,

L

C
|AB| = | DE|
|AC| = | DF|
ZBAC > LEDF

—

| BC| > | EF|
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Logical Gaps in Euclid’s Proofs

Elements, Book |, Proposition 24

Proposition 24

If two triangles have two sides equal to two sides, re
SHeCIVEY, DU (06€) has the argle enonpassed by the
oyud suaiphtline etz Gas e (Cosrepunding’ an
ge lin he other), then (the fermer wianghe) will alss
have a Base greater than the base (of the hatter).

A D
) \

VB

3 F o i'
C N

Let ABC and DEF be two trionglss having the two
cde AR od AT agpal to the twn Gldee NE and NDE
respectively  (Thae Is), AB (ecuad e« DE, and A” w0
DF. Let them alse have the angle st A greater than the
angh at D, 1 say tha the base BC is also greacer than
the tase £7.

Ior sinee engle SAC b grcater thaa asgh EDF,
let langle) ED, equal s angle BAC, have heen
onsructed at the poirt D cn the stmight-kne DE
[Proo, 1.23). And ket DG be made equal o cither of
AC o DF [Peop. 1.3], and let EG and FG have been
Jeined.

Thesefore, siome A0 5 equad w0 DE awd AC w DG,
the rwo (straighedines) BA AT are aqual 1o the twa
Geraighy-lines) E0. DG, respectively.  Alsc the gk
DAC is eqaal to the angle EDG. Thus the tase BC
is equal to the base EG [Prop 1.4). Again siwe DF
15 equal to UG, angle DU 1s also equal to ange DMG
[Proo, 5] Twas NG (W goaxr thas 107, Thu,
FFC is mach grester than ECF. And since trisnglh
EFG has mghe E7C greater than £G'F, and the greater
gk is subtended by the greaver side [Prop. 1.19], sid
EG (is) thas also greater than £F. But EYV (5) aqual to
BC. Thas, 5C (18) alio sreaerthay &5,

C

|AB| = | DE|
|AC| = [ DF]
£BAC > LEDF

—

| BC| > | EF|
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Logical Gaps in Euclid’s Proofs

Elements, Book |, Proposition 24 Only need to prove£EFG > £EGF

Proposition 24

If two triangles have two sides equil to two sides, re D
S2ecuvey but (o8e) has the argie enonpassed by the A
oyud suaiphtline etz Gas e (Cosrepunding’ an
ge lin he other), then (the fermer wionghe) will alss
have a base greater than the base (of the latter).

A D

) \

C

Let ABC and DEF be two trionglss having the two
cde AR od AT agpal to the twn Gldee NE and NDE
respectively  (Thae Is), AB (ecuad e« DE, and A” w0
DF. Let them alse have the angle st A greater than the
angh at D. 1 say tha the base BC is alo greaer than

the tase K7
Ior sinee engle SAC b grcater thaa asgh EDF, C
let langle) EDC, equil o angle BAC, have heen
onsructed at the poirt D cn the straight-kne DE
[Proo, 1.23). And ket DG be made equal o cither of
AC o DF [Peop. 1.3], and let EG and FG have been

. AB|=|DE
Thesefore, siome A s equad W0 DF awd AC w DG,

the rwo (straighedines) BA AT are aqual 1o the twa
Geraighy-lines) E0. DG, respectively.  Alsc the gl : | BC | > | EF |
DAC is eqaal to the angle EDG. Thus the tase BC AC DF

is equal to the base EG [Prop 1.4). Again siwe DF

15 equal to UG, angle DU 1s also equal to ange DMG
[Proo, 5] Twas NG (W goaxr thas 107, Thu,

FFC is mach grester than ECF And since triseglh B 4 ( > EE D E’
EFG has mghe E7C greater than £G'F, and the greater L L

gk is subtended by the greaver side [Prop. 1.19], sid
EG (is) thas also greater than £F. But EYV (5) aqual to
BC. Thas, 5C (18) alio sreaerthay &5, 88



Logical Gaps in Euclid’s Proofs

Elements, Book |, Proposition 24

Proposition 24

If two triangles have two sides equal to two sides, re
SHeCIVEY, DU (06€) has the argle enonpassed by the
oyud suaiphtline etz Gas e (Cosrepunding’ an
ge lin he other), then (the fermer wianghe) will alss
have a Base greater than the base (of the hatter).

A D
) \

C -

Let ABC and DEF be two trionglss having the two
cde AR od AT agpal to the twn Gldee NE and NDE
respectively  (Thae Is), AB (ecuad e« DE, and A” w0
DF. Let them alse have the angle st A greater than the
angh at D, 1 say tha the base BC is also greacer than
the tase £7.

Ior sinee engle SAC b grcater thaa asgh EDF,
let langle) ED, equal s angle BAC, have heen
onsructed at the poirt D cn the stmight-kne DE
[Proo, 1.23). And ket DG be made equal o cither of
AC o DF [Peop. 1.3], and let EG and FG have been
Jeined.

Thesefore, siome A0 5 equad w0 DE awd AC w DG,
the rwo (straighedines) BA AT are aqual 1o the twa
Geraighy-lines) E0. DG, respectively.  Alsc the gk
DAC is eqaal to the angle EDG. Thus the tase BC
is equal to the base EG [Prop 1.4). Again siwe DF
15 equal to UG, angle DU 1s also equal to ange DMG
[Proo, 5] Twas NG (W goaxr thas 107, Thu,
FFC is mach grester than ECF. And since trisnglh
EFG has mghe E7C greater than £G'F, and the greater
gk is subtended by the greaver side [Prop. 1.19], sid
EG (is) thas also greater than £F. But EYV (5) aqual to
BC. Thas, 5C (18) alio sreaerthay &5,

Only need to prove£EFG > £EGF

D /\ DG Fis isosceles!
£2DGF = «2DFG

C

|AB| = | DE|
|AC| = [ DF]
£BAC > LEDF

— | BC|> | EF|
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Logical Gaps in Euclid’s Proofs

Elements, Book

Proposition 24

If two triangles have two sides equal to two sides, re
S2ecuvey but (o8e) has the argie enonpassed by the
oyud suaiphtline etz Gas e (Cosrepunding’ an
ge lin he other), then (the fermer wianghe) will alss
have a Base greater than the base (of the latter).

A D
) \

VB

| nv F
C N

Let ABC and DEF be two trionglss having the two
cde AR od AT agpal to the twn Gldee NE and NDE
respectively  (Thae Is), AB (ecuad e« DE, and A” w0
DF. Let them alse have the angle st A greater than the
angh at D, 1 say tha the base BC is also greacer than
the tase K7

Ior sinee engle SAC b grcater thaa asgh EDF,
let langle) EDC, oqual o angle BAC, have heen
onsructed at the poirt D cn the straight-kne DE
[Proo, 1.23). And ket DG be made equal o cither of
AC o DF [Peop. 1.3], and let EG and FG have been
Jeined.

Thesefore, siome A0 5 equad w0 DE awd AC w DG,
the rwo (straighedines) BA AT are aqual 1o the twa
Geraighe-lines) E0. DG, respectively.  Alsc the gk
DAC is eqaal to the angle EDG. Thus the tase BC
is equal to the base EG [Prop 1.4). Again siwe DF
15 equal to UG, angle DU 1s also equal to ange DMG
[Proo, 5] Twas NG (W goaxr thas 107, Thu,
FFC is mach grester than ECF. And since trisnglh
EFG has mghe E7C greater than £G'F, and the greater
gk is subtended by the greaver side [Prop. 1.19], sid
EG (is) thas also greater than £F. But EYV (5) aqual to
BC. Thus, 5C (1s) alio sreaer thay &5,

|, Proposition 24

A

\
AN \
\\
N

N

|AB| = | DE|
|AC| = [ DF]
£BAC > LEDF

— | BC|> | EF|
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Logical Gaps in Euclid’s Proofs

Elements, Book

Proposition 24

If two triangles have two sides equal to two sides, re
S2ecuvey but (o8e) has the argie enonpassed by the
oyud suaiphtline etz Gas e (Cosrepunding’ an
ge lin he other), then (the fermer wianghe) will alss
have a Base greater than the base (of the latter).

A D
) \

VB

| nv F
C N

Let ABC and DEF be two trionglss having the two
cde AR od AT agpal to the twn Gldee NE and NDE
respectively  (Thae Is), AB (ecuad e« DE, and A” w0
DF. Let them alse have the angle st A greater than the
angh at D, 1 say tha the base BC is also greacer than
the tase K7

Ior sinee engle SAC b grcater thaa asgh EDF,
let langle) EDC, oqual o angle BAC, have heen
onsructed at the poirt D cn the straight-kne DE
[Proo, 1.23). And ket DG be made equal o cither of
AC o DF [Peop. 1.3], and let EG and FG have been
Jeined.

Thesefore, siome A0 5 equad w0 DE awd AC w DG,
the rwo (straighedines) BA AT are aqual 1o the twa
Geraighe-lines) E0. DG, respectively.  Alsc the gk
DAC is eqaal to the angle EDG. Thus the tase BC
is equal to the base EG [Prop 1.4). Again siwe DF
15 equal to UG, angle DU 1s also equal to ange DMG
[Proo, 5] Twas NG (W goaxr thas 107, Thu,
FFC is mach grester than ECF. And since trisnglh
EFG has mghe E7C greater than £G'F, and the greater
gk is subtended by the greaver side [Prop. 1.19], sid
EG (is) thas also greater than £F. But EYV (5) aqual to
BC. Thus, 5C (1s) alio sreaer thay &5,

|, Proposition 24

£ZBAC > LEDF

| AB|
| AC|

| DE|
| DF|

—

| BC| > | EF|
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Logical Gaps in Euclid’s Proofs

Elements, Book

Proposition 24

If two triangles have two sides equal to two sides, re
S2ecuvey but (o8e) has the argie enonpassed by the
oyud suaiphtline etz Gas e (Cosrepunding’ an
ge lin he other), then (the fermer wianghe) will alss
have a Base greater than the base (of the latter).

A D
) \

VB

| nv F
C N

Let ABC and DEF be two trionglss having the two
cde AR od AT agpal to the twn Gldee NE and NDE
respectively  (Thae Is), AB (ecuad e« DE, and A” w0
DF. Let them alse have the angle st A greater than the
angh at D, 1 say tha the base BC is also greacer than
the tase K7

Ior sinee engle SAC b grcater thaa asgh EDF,
let langle) EDC, oqual o angle BAC, have heen
onsructed at the poirt D cn the straight-kne DE
[Proo, 1.23). And ket DG be made equal o cither of
AC o DF [Peop. 1.3], and let EG and FG have been
Jeined.

Thesefore, siome A0 5 equad w0 DE awd AC w DG,
the rwo (straighedines) BA AT are aqual 1o the twa
Geraighe-lines) E0. DG, respectively.  Alsc the gk
DAC is eqaal to the angle EDG. Thus the tase BC
is equal to the base EG [Prop 1.4). Again siwe DF
15 equal to UG, angle DU 1s also equal to ange DMG
[Proo, 5] Twas NG (W goaxr thas 107, Thu,
FFC is mach grester than ECF. And since trisnglh
EFG has mghe E7C greater than £G'F, and the greater
gk is subtended by the greaver side [Prop. 1.19], sid
EG (is) thas also greater than £F. But EYV (5) aqual to
BC. Thus, 5C (1s) alio sreaer thay &5,

|, Proposition 24

£ZBAC > LEDF

| AB|
| AC|

| DE|
| DF|

—

| BC| > | EF|
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/\ DGFis isosceles

Logical Gaps in Euclid’s Proofs 2DGF = 2DFG =a

Elements, Book

Proposition 24

If two triangles have two sides equal to two sides, re
SHecIvely, but (08e) has the argle enonpassed by thy
oyud suaiphtline etz Gas e (Cosrepunding’ an
ge lin he other), then (the fermer wianghe) will alss
have a base greater than the base (of the latter).

A D
) \

C -

Let ABC and DEF be two trionglss having the two
cde AR od AT agpal to the twn Gldee NE and NDE
respectively  (Thae Is), AB (ecuad e« DE, and A” w0
DF. Let them alse have the angle st A greater than the
angh at D. 1 say tha the base BC is alo greaer than
the tase K7

Ior sinee engle SAC b grcater thaa asgh EDF,
let langle) EDC, equil o angle BAC, have heen
consructed at the poirt D on the strightkne DE
[Proo, 1.23). And ket DG be made equal o cither of
AC o DF [Peop. 1.3], and let EG and FG have been
Jeined.

Thesefore, siome A s equad W0 DF awd AC w DG,
the rwo (straighedines) BA AT are aqual 1o the twa
CGerighy-lines) £0. DG, respectively  Alse the ik
DAC is eqaal to the angle EDG. Thus the tase BC
is equal to the base EG [Prop 1.4). Again siwe DF
15 equal to UG, angle DU 1s also equal to ange DMG
[Proo, 5] Twas NG (W goaxr thas 107, Thu,
FFC is mach grester than ECF And since triseglh
EFG has mghe E7C greater than £G'F, and the greater
gk is subtended by the greaver side [Prop. 1.19], sid
EG (is) thas also greater than £F. But EYV (5) aqual to
BC. Thus, 5C (1s) alio sreaer thay &5,

|, Proposition 24

|AB| = | DE|
|AC| = [ DF]
£BAC > LEDF

— | BC|> | EF|
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Logical Gaps in Euclid’s Proofs

|, Proposition 24

Elements, Book

Proposition 24

If two triangles have two sides equil to two sides, re
specavel, DUt (0ee) has the argle enonpassed by the
oyud suaiphtline etz Gas e (Cosrepunding’ an
ge lin he other), then (the fermer wionghe) will alss
have a base greater than the base (of the latter).

A D
) \

C -

Let ABC and DEF be two trionglss having the two
cde AR od AT agpal to the twn Gldee NE and NDE
respectively  (Thae Is), AB (ecuad e« DE, and A” w0
DF. Let them alse have the angle st A greater than the
angh at D. 1 say tha the base BC is alo greaer than
the tase K7

Ior sinee engle SAC b grcater thaa asgh EDF,
let langle) EDC, equil o angle BAC, have heen
onsructed at the poirt D cn the straight-kne DE
[Proo, 1.23). And ket DG be made equal o cither of
AC o DF [Peop. 1.3], and let EG and FG have been
Jeined.

Thesefore, siome A s equad W0 DF awd AC w DG,
the rwo (straighedines) BA AT are aqual 1o the twa
Cieraighe-lines) E0. DG, respectively.  Alsc the sk
DAC is eqaal to the angle EDG. Thus the tase BC
is equal to the base EG [Prop 1.4). Again siwe DF
15 equal to UG, angle DU 1s also equal to ange DMG
[Proo, 5] Twas NG (W goaxr thas 107, Thu,
FFC is mach grester than ECF And since triseglh
EFG has mghe E7C greater than £G'F, and the greater
gk is subtended by the greaver side [Prop. 1.19], sid
EG (is) thas also greater than £F. But EYV (5) aqual to
BC. Thus, 5C (1s) alio sreaer thay &5,

| AB|
| AC|

| DE|
| DF|
£BAC > LEDF

/\ DGFis isosceles
2DGF = «2DFG =«

Need to provex > y

N
<o

O\

— | BC|> | EF|
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Logical Gaps in Euclid’s Proofs

|, Proposition 24

Elements, Book

Proposition 24

If two triangles have two sides equal to two sides, re
SHecIvely, but (08e) has the argle enonpassed by thy
oyud suaiphtline etz Gas e (Cosrepunding’ an
ge lin he other), then (the fermer wianghe) will alss
have a base greater than the base (of the latter).

A D
) \

C -

Let ABC and DEF be two trionglss having the two
cde AR od AT agpal to the twn Gldee NE and NDE
respectively  (Thae Is), AB (ecuad e« DE, and A” w0
DF. Let them alse have the angle st A greater than the
angh at D. 1 say tha the base BC is alo greaer than
the tase K7

Ior sinee engle SAC b grcater thaa asgh EDF,
let langle) EDC, equil o angle BAC, have heen
consructed at the poirt D on the strightkne DE
[Proo, 1.23). And ket DG be made equal o cither of
AC o DF [Peop. 1.3], and let EG and FG have been
Jeined.

Thesefore, siome A s equad W0 DF awd AC w DG,
the rwo (straighedines) BA AT are aqual 1o the twa
CGerighy-lines) £0. DG, respectively  Alse the ik
DAC is eqaal to the angle EDG. Thus the tase BC
is equal to the base EG [Prop 1.4). Again siwe DF
15 equal to UG, angle DU 1s also equal to ange DMG
[Proo, 5] Twas NG (W goaxr thas 107, Thu,
FFC is mach grester than ECF And since triseglh
EFG has mghe E7C greater than £G'F, and the greater
gk is subtended by the greaver side [Prop. 1.19], sid
EG (is) thas also greater than £F. But EYV (5) aqual to
BC. Thus, 5C (1s) alio sreaer thay &5,

/\ DGFis isosceles
2DGF = «2DFG =«

Need to provex > y

LDGE=a+y<nrm

O\

|AB| = | DE|
|AC| = [ DF]
£BAC > LEDF

— | BC|> | EF|
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/\ DGFis isosceles

Logical Gaps in Euclid’s Proofs 2DGF = 2DFG =a

Elements, Book

Proposition 24

If two triangles have two sides equal to two sides, re
Secively but (oee) has the argie enonpassed by the
oyud suaiphtline etz Gas e (Cosrepunding’ an
ge lin he other), then (the fermer wianghe) will alss
have a base greater than the base (of the latter).

A D
. )

| nV F
C N

Let ABC and DEF be two trionglss having the two
cde AR od AT agpal to the twn Gldee NE and NDE
respectively (Thae 15), AB (ecuald € DE, and A7 w0
DF. Let them alse have the angle st A greater than the
angh at D. 1 say tha the base BC is alo greaer than
the tase K7

Ior sinee engle SAC b grcater thaa asgh EDF,
let langle) EDC, equil o angle BAC, have heen
consructed at the poirt D on the stmight-kne DE
[Proo, 1.23). And ket DG be made equal o cither of
AC o DF [Peop. 1.3], and let EG and FG have been
Jeined.

Thesefore, siome A s equad W0 DF awd AC w DG,
the rwo (straighedines) BA AT are aqual 1o the twa
Geraighe-lines) E0. DG, respectively.  Alsc the gk
DAC is eqaal to the angle EDG. Thus the tase BC
is equal to the base EG [Prop 1.4). Again siwe DF
15 equal to UG, angle DG 1s also equal to ange DAMG
[(Proo, L5) Tws NG (W goaxe thas 10T, Thu,
FFC is mach grester than ECF And since triseglh
EFG has mghe E7C greater than £G'F, and the greater
mgh is subtended by the greater side [Prop. 1.19], side
EG (is) thas also greater than £F. But EYV (5) aqual to
BC. Thus, 5C (1s) alio sreaer thay &5,

l, Proposition 24 Need to provex > y

LDGE=a+y<nrm

LDFE =2r—a—x<rx

|AB| = | DE|
|AC| = [ DF]
£BAC > LEDF

— | BC|> | EF|
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/\ DGFis isosceles

Logical Gaps in Euclid’s Proofs 2DGF = 2DFG =a

Elements, Book I, Proposition 24 Need to provex > y

Proposition 24

If two triangles have two sides equal to two sides, re
S2ecively but (oee) has the argie enonpassed by the
oyud suaiphtline etz Gas e (Cosrepunding’ an
ge lin he other), then (the fermer wianghe) will alss
have a base greater than the base (of the latter).

A D
. )

C -

Let ABC and DEF be two trionglss having the two
cde AR od AT agpal to the twn Gldee NE and NDE
respectively (Thae 15), AB (ecuald € DE, and A7 w0
DF. Let them alse have the angle st A greater than the
angh at D, 1 say tha the base BC is alo greaser than
the tase K7

Ior sinee engle SAC b grcater thaa asgh EDF,
let langle) EDC, equil o angle BAC, have heen
consructed at the poirt D on the stmight-kne DE
[Proo, 1.23). And ket DG be made equal o cither of
AC o DF [Peop. 1.3], and let EG and FG have been
Jeined.

Therefore, some A2 5 equad 0 DF awd AC w DG,
the rwo (straighedines) BA AT are aqual 1o the twa
Ciersighy-lines) E0. DG, respectively  Alse the gk
DAC is eqaal to the angle EDG. Thus the tase BC
is equal to the base EG [Prop 1.4). Again siwe DF
15 equal to UG, angle DG 1s also equal to ange DAMG
[(Proo, L5) Tws NG (W goaxe thas 10T, Thu,
FFC is mach grester than ECF And since triseglh
EFFC has aaghe E7C greater than 2GF, and the greater
gk issubtended by the greater side [Prop. 1.19], sid:
EG (is) thas also greater than £F. But EYV (5) aqual to
BC. Thus, 5C (1s) alio sreaer thay &5,

LDGE=a+y<nrm

LDFE =2r—a—x<rx

O\
. S, dr—x+y<2rm
N\ \\

\\ NE Q.E.D.

|AB| = |DE|
|AC| = | DF|
£ZBAC > LEDF

— | BC|> | EF|
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Equivalence Checking Between Theorems

 Two theorems 1, and 7, are equivalent iff we can prove 17 < 1,
« Symbolic reasoning engine based on SMT solvers

theorem proposition_1 : ¥ (a b : Point) (A3 : Line),

distinctPointsOnLine a b AB -

e 231 = (iabi o)1 = 1tat)t \ = |
J ¢ : Point, |(c-a)]| |(a=b!| A |(c-b)| |{a—b) | =29 Equvalent?
r  —
Ground truth theorem 'CVC5, x
SMT-based symbolic

theorem proposition_1" : ¥V (a b : Point) (AB : l_mc),/ reasoning engine

a.onL:ne AB A b.onLinz ABA a = b =~

3 ¢ : Point, |(a-c)| = |(c=b)| A |(a-c)| = |(a-b!|

Autoformalized theorem
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Diagrammatic Reasoning

Ubiquitous reasoning gaps in Euclidean geometry

« Geometry proofs rely on diagrams that are hard to formalize
« Example: Euclid’s Elements, Book |, Proposition 1

One can construct a equilateral triangle given two distinct points
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Diagrammatic Reasoning

Ubiquitous reasoning gaps in Euclidean geometry

« Geometry proofs rely on diagrams that are hard to formalize
« Example: Euclid’s Elements, Book |, Proposition 1

One can construct a equilateral triangle given two distinct points

A

o
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Diagrammatic Reasoning

Ubiquitous reasoning gaps in Euclidean geometry

« Geometry proofs rely on diagrams that are hard to formalize
« Example: Euclid’s Elements, Book |, Proposition 1

One can construct a equilateral triangle given two distinct points
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Diagrammatic Reasoning

Ubiquitous reasoning gaps in Euclidean geometry

« Geometry proofs rely on diagrams that are hard to formalize
« Example: Euclid’s Elements, Book |, Proposition 1

One can construct a equilateral triangle given two distinct points
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Diagrammatic Reasoning

Ubiquitous reasoning gaps in Euclidean geometry

« Geometry proofs rely on diagrams that are hard to formalize
« Example: Euclid’s Elements, Book |, Proposition 1

One can construct a equilateral triangle given two distinct points
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Diagrammatic Reasoning

Ubiquitous reasoning gaps in Euclidean geometry

« Geometry proofs rely on diagrams that are hard to formalize
« Example: Euclid’s Elements, Book |, Proposition 1

One can construct a equilateral triangle given two distinct points
{ | Did we prove C exists?

104



Modelinq Diagrammatic Reasoning
The Formal System E

[Avigad et al., "A formal system for Euclid's Elements", 2008]

« Diagrammatic reasoning are logical consequences of "diagrammatic rules”

centre unigque : ¥ (a & : Point) (& : Circle), {isCentrs < @} A [isCentrs o ®) — a - b
center_:inzide <ircle : ¥V (a : PoinT) (@ @ Cirecls), iszCentre © ¢ — inzidelircls a «
inzide_not_aon_cirnie : ¥V (a ! Point) (@ @ Uirale), irgidediradle a a - " {ancirele & )

Dolwoeern_syrm oz ¥ {a b o o Foinll), bolwoeen & b ¢ = (Balweer o Boa) A (8 # bl A (= F# ] A

A{batweomn b oa o)

Bolween_same_ T irne_oul. @ ¥ (4 b oo Poinll) (L oz Line), (boleces a2 b o) A {eechine a4 L) A |

onbLine L) = online ¢ L

between 2ame lin= in ! ¥V {a b ¢ : Point} (L : Lin=), (betws=sn a b ¢) A {(cnlLine a2 L) A | \MT

¢ We Imple onbins o L) — cnline b L )
solvers
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Putting It Together

Proposition 1 theorem proposition_1 : V¥ (a b : Point) (A3 : Line),
To construct an equilateral triangle on a given finite distinctPointsOnLine a b AB -
straight-line. Jc : Point, |(c-a)| = |(a-b!| A |(c-b)]| = |(a-b)|
/ } N
/ \ Greound truth theorem
|‘v “II
D 4 E
\ | J f
N\ N yd

Let AB be the given finite straight-line,

So it is required :0 construct an equilateral triangle on
the stralght-line AL,

Let the cirzle BCD with center A and radius A3 have
been diawn [Post. 3], and again let the circe ACE with
center 3 and radius BA have been drawn [Post. 3]. And
let the straight-lines A eand €8 have beer joined from
the point C, where the circles cut ore anather,' to the
points A and B (respectively) [Post. 1].

And since the peint A is the centerof thecircdle CDB,
AC is equal to AE [Def. 1.15). Again, since the point
E is the center of the cixle CAE, BC is squal to BA
[Def. 1.15]. But C' A was also shown (10 be) equal 10 AB.
Thus, CA and CB are each equal to A3. But things equal
to the same thing are also equal to on2 another [C.N. 1].
Thus, CA is also equal to CB. Thus, the three (straight-
lines) CA, AB, and BC are equal to cne anather.

Thus, the thangle ABC 1s equlateral, énd has been
constru:ted on the ziven finite straight-line AB. (Which
is) the very thing it was required to do.

Informal Euclidean geometry problem
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Putting It Together

Proposition 1
To construct an equilateral triangle on a given finite
straight-line.
v AN N\

I.' |.",,/' . \

D Al B E'

| | J f

\, /

\. . "\EZ'\(/" .-//

Let AB be the given finite straight-line,

So it is required 0 construct an equilateral triangle on
the stralght-line AL,

Let the circle BC D with center A and radius A3 have
been diawn [Post. 3], and again let the circe ACE with
center 3 and radius BA have been drawn [Post. 3]. And
let the straight-lines A eand €8 have beer joined from
the point C, where the circles cut ore anather,' to the
points A and B (respectively) [Post. 1].

And since the peint A is the centerof thecircdle CDB,
AC is equal to AE [Def. 1.15). Again, since the point
E is the center of the cixcle CAE, BC is equal to BA
[Def. 1.15]. But C' A was also shown (10 be) equal 10 AB.
Thus, CA and CB are each equal to A3. But things equal
to the same thing are also equal to on2 another [C.N. 1].
Thus, CA is also equal to CB. Thus, the three (straight-
lines) CA, AB, and BC are equal to cne anather.

Thus, the thangle ABC 1s equlateral, énd has been
constru:ted on the ziven finite straight-line AB. (Which
is) the very thing it was required to do.

Informal Euclidean geometry problem

theorem proposition_1 : V¥ (a b : Point) (A3 : Line),
distinctPointsOnLine a b AB =«
Jc : Point, |(c-a)| = |(a-b!| A |(c-b)| = |(a-b)|

Greund truth theorem

theorem proposition_1' : ¥ (a b : Point) (AB : Line),
a.onL:ne AB A b.onLine ABA a # b ~
3 ¢ : Point, |(a-c)| = |(c=b)| A |(a-c)| = |(a-b!|

Autoformalized theorem
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Putting It Together

Proposition 1 theorem proposition_1 : V¥ (a b : Point) (A3 : Line),
T construct an equilateral triangle on a given finite distinctPointsOnLine a b AB - v\
straight line. . 3¢ : Point, |(c-a)| = |(a=bi| A [(c-b)| = |(a=b)| 2> Equvalent? /
R . I 1
/ ” / A\ \ Greund truth theorem CVC5 x
D Al B g SMT-based symbolic
\ \ / theorem proposition_1' : ¥V (a b : Point) (AB : me),/ reasoning engine
\ \ / / l:> a.onL:ne AB A b.onLine AB A a # b -
\\___ _\./ d 3 ¢ : Point, |(a-c)| = |(c=b)| A |(a-c)| = |(a-b!|
Let AB be the given finite str?ght»line. .
So it is required :0 construct an equilateral triangle on Autoformalized theorem

the stralght-line AL,

Let the circle BC D with center A and radius A3 have
been diawn [Post. 3], and again let the circe ACE with
center 3 and radius BA have been drawn [Post. 3]. And
let the straight-lines A eand €8 have beer joined from
the point C, where the circles cut ore anather,' to the
points A and B (respectively) [Post. 1].

And since the peint A is the centerof thecircdle CDB,
AC is equal to AE [Def. 1.15). Again, since the point
E is the center of the cixcle CAE, BC is equal to BA
[Def. 1.15]. But C' A was also shown (10 be) equal 10 AB.
Thus, CA and CB are each equal to A3. But things equal
to the same thing are also equal to on2 another [C.N. 1].
Thus, CA is also equal to CB. Thus, the three (straight-
lines) CA, AB, and BC are equal to cne anather.

Thus, the thangle ABC 1s equlateral, énd has been
constru:ted on the ziven finite straight-line AB. (Which
is) the very thing it was required to do.

Informal Euclidean geometry problem
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Putting It Together

Proposition 1 theorem proposition_1 : V¥ (a b : Point) (A3 : Line),
T construct an equilateral triangle on a given finite distinctPointsOnLine a b AB - \
straight line. A 3¢ : Point, |(c-a)| = |(a=bi| A [(c-b)| = |(a=b)| 2> Equvalent? /
// | {/”\\\ \\ Greund truth theorem 'CVC5 ' x
{ \\
b A g SMT-based symbolic
/ \ / theorem proposition_1' : ¥ (a b : Point) (AB : Line), reasoning engine
\ \ / / l:> a.onLine AB A b.onLine AB A a # b - /
\_ _\-/ d 3 ¢ : Point, |(a-c)| = |(c=b)| A |(a-c)| = |(a-b!|
Let AB be the given finite str?gh;-line.
So it is required :0 construct an equilateral triangle on Autoformalized theorem

the stralght-line AL,
Let the circle BC D with center A and radius A3 have

been diawn [Post. 3], and again let the circe ACE with

center 3 and radius BA have been drawn [Post. 3]. And

let the straight-lines A eand €8 have beer joined from

the point C, where the circles cut ore anather,' to the by

points A and B (respectively) [Post. 1). s
And since the peint A is the centerof the cirdle CDB, euclid_intres

AC is equal to AE [Def. 1.15). Again, since the point euclid_apply circle_from_points a b 2s B(D

E is the center of the cixcle CAE, BC is squal to BA euclid_apply circle_from_points b a as ACE

[Def. 1.15). But C' A was also shown (w0 be) equal .0 AB. . . .
Thus, CA and CB are each equal to AB. But things equal l::) euclid_apply intersection_circles BCD ACE as ¢

to the same thing are also equal to on2 another [C.N. 1]. i ) : : tf a
Thus, CA is also equal to CB. Thus, the three (straight- euclJ..d_apply po?.nt_on_CJ..rcle_only:!.f @ bcBO
lines) CA, AB, and BC are equal to cne andther. euclid_apply point_on_circle_onlyif b a ¢ ACE

Thus, the tnangle ASC 1s equilateral, end has been

construzted on the given finite straight-line AB. (Which use C .
is) the very thing it was required to do. cuclid_finish
Informal Euclidean geometry problem Autoformalized proof
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Putting It Together

Proposition 1
To construct an equilateral triangle on a given finite
straight-line.
L
v AN :
/7N N\
f ," \ "'. “|
{ / \) \
D Aus E|
Il \ /I |
\ /

./
N S

Let AB be the given finite straight-line,

So it is required 0 construct an equilateral triangle on
the stralght-line AL,

Let the circle BC D with center A and radius A3 have
been diawn [Post. 3], and again let the circe ACE with
center 3 and radius BA have been drawn [Post. 3]. And
let the straight-lines A eand €8 have beer joined from
the point C, where the circles cut ore anather,' to the
points A and B (respectively) [Post. 1].

And since the pcint A is the centerof thecircdle CDB,
AC is equal to AE [Def. 1.15). Again, since the point
E is the center of the cixle CAE, BC is squal to BA
[Def. 1.15]. But C' A was also shown (10 be) equal 10 AB.
Thus, CA and CB are each equal to A3. But things equal
to the same thing are also equal to on2 another [C.N. 1].
Thus, CA is also equal to CB. Thus, the three (straight-
lines) CA, AB, and BC are equal to cne anather.

Thus, the tnangle ASC 1s equilateral, end has been
construzted on the ziven finite straight-line AB, (Which
is) the very thing it was required to do.

Informal Euclidean geometry problem

theorem proposition_1 : V¥ (a b : Point) (A3 : Line),

distinctPointsOnLine a b AB =«

Jc : Point, |(c-a)]| = |(a-b!| A |(c-b)| = |(a—b)|\

Greund truth theorem

theorem proposition_1' : ¥V (a b : Point) (AB : me),/

a.onL:ne AB A b.onLin2 ABA a # b ~
3 ¢ : Point, |(a-c)| = |(c=b)| A |(a-c)| = |(a-b!|

Autoformalized theorem

euclid_intrcs

euclid_apply circle_from_points a b 2s B(D
euclid_apply circle_from_points b a as ACE
euclid_apply intersection_circles BCD ACE as ¢
euclid_apply point_on_circle_onlyif 2 b ¢ BCD
euclid_apply point_on_circle_onlyif b a ¢ ACE
use ¢

cuclid_finish

Autoformalzed proof

23 Equvalent? J

CVC5, X

SMT-based

symbolic

reasoning engine

[ VN
=

ab: Point

AB :Line

BCL ACE : Circle
isCenter a BCD
onCircle b BCD
isCenter b ACE
ondircle a ACE

- intersaects BCD ACE

Diagrammatic reasoning gaps
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Putting It Together

Proposition 1
To construct an equilateral triangle on a given finite
straight-line.
L
/s AN :
YA N
l' ||’/ \l‘l \
D Af—‘B E'
| J f
\ ‘\ ’1’ ,,l‘
\ / /

\
S~ xS

Let AB be the given finite straight-line,

So it is required 0 construct an equilateral triangle on
the stralght-line AL,

Let the circle BC D with center A and radius A3 have
been diawn [Post. 3], and again let the circe ACE with
center 3 and radius BA have been drawn [Post. 3]. And
let the straight-lines A eand €8 have beer joined from
the point C, where the circles cut ore anather,' to the
points A and B (respectively) [Post. 1).

And since the pcint A is the centerof thecircdle CDB,
AC is equal to AE [Def. 1.15). Again, since the point
E is the center of the cixle CAE, BC is squal to BA
[Def. 1.15]. But C' A was also shown (10 be) equal 10 AB.
Thus, CA and CB are each equal to A3. But things equal
to the same thing are also equal to on2 another [C.N. 1].
Thus, CA is also equal to CB. Thus, the three (straight-
lines) CA, AB, and BC are equal to cne anather.

Thus, the tnangle ASC 1s equilateral, end has been
construzted on the ziven finite straight-line AB, (Which
is) the very thing it was required to do.

Informal Euclidean geometry problem

theorem proposition_1

: ¥ (ab: Point) (A3 : Line),
distinctPointsOnLine a b AB =«

Jc : Point, |(c-a)]| = |(a-b!| A |(c-b)| = |(a—b)|\

Greound truth theorem

theorem proposition_1' : ¥ (a b : Point) (AB : me),/

a.onL:ne AB A b.onLin2 ABA a # b ~
3 ¢ : Point, |(a-c)| = |(c-b)| A |(a-c)| = |(a-bi|

Autoformalized theorem

euclid_intrcs

euclid_apply circle_from_points a b 2s B(D
euclid_apply circle_from_points b a as ACE
euclid_apply intersection_circles BCD ACE as ¢
euclid_apply point_on_circle_onlyif 2 b ¢ BCD
euclid_apply point_on_circle_onlyif b a ¢ ACE
use ¢

cuclid_finish

Autoformalzed proof

ZB Equvalent? J

CVC5, X

SMT-based

symbolic

reasoning engine

[ VN
=

ab: Point

AB :Line

BCL ACE : Circle
isCenter a BCD
onCircle b BCD
isCenter b ACE
ondircle a ACE

- intersaects BCD ACE

Diagrammatic reasoning gaps
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Experiments: Autoformalizing Theorems

nGPT-4 »GPT-4V
Success rate (%)
275

22.0
16.5
11.0

5.5

0.0

D-shot 1-shot 5-shot
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Takeaways

« Two challenges in autoformalization
 Autoformalized theorems are difficult to evaluate
 Autoformalizing proofs require filling in reasoning gaps

* They can be addresses leveraging knowledge in specific domains

* Open problem: How to generalize across domains?
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Al Meets Formal Mathematics

T ———————————— — -~ T T ——————————————————— — b

7’ ~ _ ) ) ) ~
/ \ 7 theorem exists_infinite_primes (n : K) : 3 p, n = p a Prime p N
I | \
I . ' Theorem |
! . o | ! proving |
| Theorem 1. There erists an infinite number of primes. I I |
I . 3 9 | tTpi=m ; 1 ¢+ 1 |
I Proof. Let nn be an arbitrary pusitive integer, and let | | .lf A l“ .rrer in __) ’ B _ ‘ |
| pe Z¥ bea p:inn; factor of n!+ 1. We can derive r>mn I E> | Nwe 11.1.% e .——rl'_‘_-.)l_gl %1 SUCC_LESucc «| Tactorialpes I
I by noting that n! + 1 cannot be divided by positive | I have pp : Prime p := minFac_prime f1

integers from 2 to no Sinee n is arbitrary, we have | have np : n s p := l
I proved that the number of primes is infinite. 0O ) Auto- ! le_of_net_ge fun h => l
| I fOfmalizationl have h: @ p n i= dvd_ftactorial (minFac_pos _) h I
| I | have h: : p | 1 := (Nat.dvd_add_iff_right hi).2 (minFac_dvd ) |
I ) | pp.not_dvd_one h: |
\ v ! /

\P» PR, PR)
\ Py . d ’
Informal math Formal theorem statement and proof
Formal Reasoning Meets LLMs: Towards Al for Mathematics and 114
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