Instructors: Dawn Song & Xinyun Chen

Brief History and Overview

Guest Speaker: Shunyu Yao

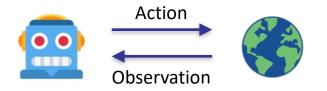
(Disclaimer: all views my own)

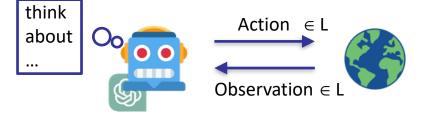
Outline

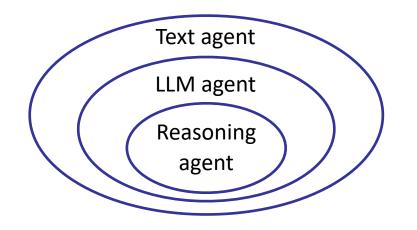
- What is LLM agents?
- A brief history of LLM agents
 - In the recent context of "LLM"
 - In the ancient context of "agents"
- On the future of LLM agents

What is "agent"?

What is "agent"?

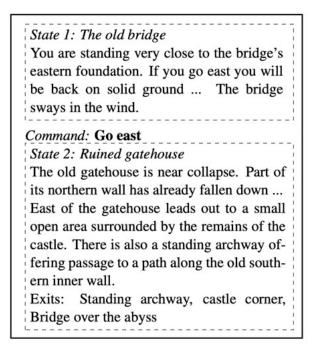


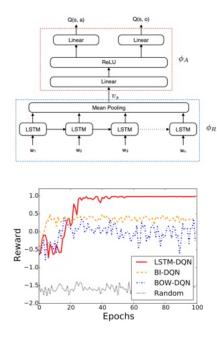



What is "agent"?

- An "intelligent" system that interacts with some "environment"
 - Physical environments: robot, autonomous car, ...
 - Digital environments: DQN for Atari, Siri, AlphaGo, ...
 - Humans as environments: chatbot
- Define "agent" by defining "intelligent" and "environment"
 - It changes over time!
 - Exercise question: how would you define "intelligent"?

What is "LLM agent"?

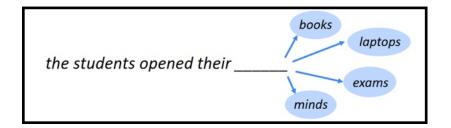

Level 1: Text agent

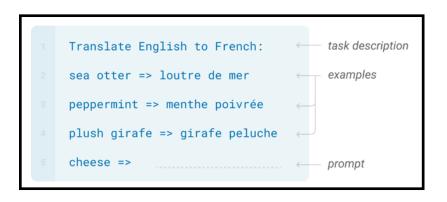

- Uses text action and observation
- Examples: ELIZA, LSTM-DQN
- Level 2: LLM agent
 - Uses LLM to act
 - Examples: SayCan, Language Planner
- Level 3: Reasoning agent
 - Uses LLM to reason to act
 - Examples: ReAct, AutoGPT
 - The key focus of the field and the talk

ELIZA (1966): Text agent via rule design

Welcome to	EEEEE LL	IIII ZZZZZZ II ZZ II ZZ II ZZ III ZZ IIII ZZZZZZ	ААААА АА АА ААААААА АА АА АА АА		
The original pro This implementat ELIZA: Is somethin YOU: Men are all ELIZA: What is the YOU: They're alw ELIZA: Can you thi YOU: Well, my bo ELIZA: Is it impor	alike. connection, do y ways bugging us at nk of a specific byfriend made me o tant to you that depressed much o to hear that you I am unhappy.	ed by Joseph Wei andsteiner 2005 you suppose ? bout something of example ? come here. your boyfriend of the time. are depressed.	or other.	• •	Domain specific! Requires manual design Cannot work beyond simple domains

LSTM-DQN (2015): Text agent via RL

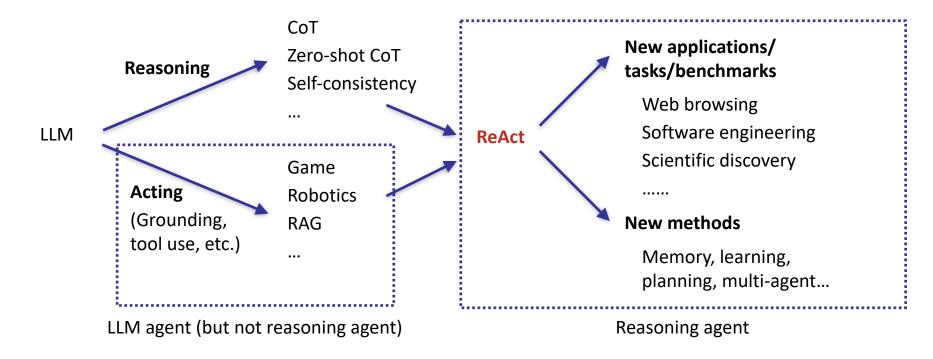




- Domain specific!
- Requires scalar reward signals
- Requires extensive training

Language understanding for text-based games using deep reinforcement learning. EMNLP 2015.

The promise of LLMs: Generality and few-shot learning



Training: next-token prediction on massive text corpora

Inference: (few-shot) prompting for various tasks!

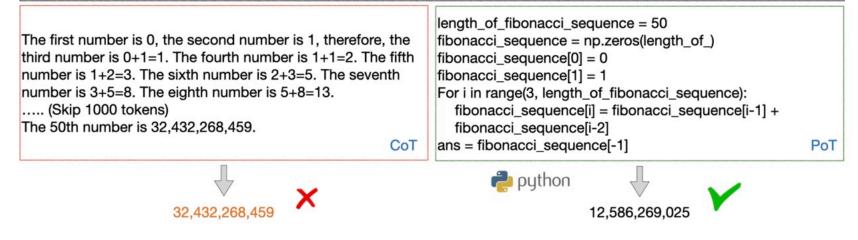
Language Models are Few-Shot Learners NeurIPS 2020.

A brief history of LLM agents

Let's consider one task for now: question answering (QA).

Question answering

Q: Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder for \$2 per egg. How much does she make every day?


Requires reasoning

People came up with various solutions for different QA tasks.

Code augmentation for computation

Question: In Fibonacci sequence, it follows the rule that each number is equal to the sum of the preceding two numbers. Assuming the first two numbers are 0 and 1, what is the 50th number in Fibonacci sequence?

Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks

Retrieval-augmented generation (RAG) for knowledge

Answer knowledge-intensive questions with

- Extra corpora
- A retriever (e.g., BM25, DPR, etc.)
- What if there's no corpora? (e.g. who's the latest PM?)

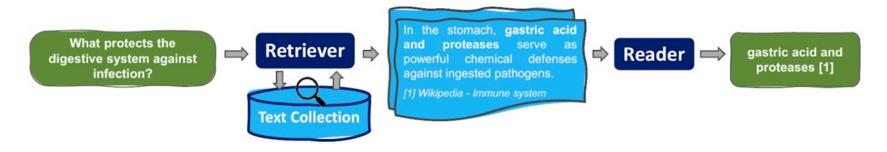


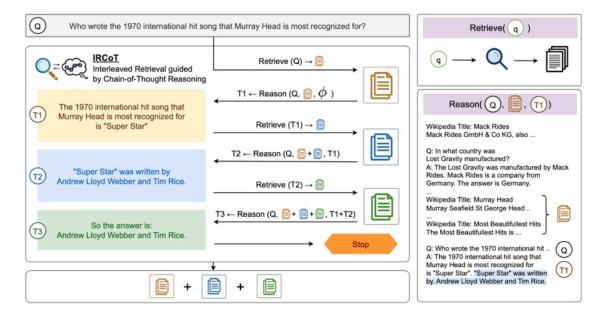
Image: http://ai.stanford.edu/blog/retrieval-based-NLP/

Tool use

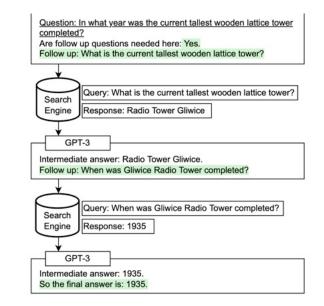
- Special tokens to invoke tool calls for
 - Search engine, calculator, etc.
 - Task-specific models (translation)
 - APIs
- Unnatural format requires task/tool-specific fine-tuning
- Multiple tool calls?

A weather task: how hot will it get in NYC today? |*weather* lookup region=NYC |*result* precipitation chance: 10, high temp: 20c, low-temp: 12c |*output* today's high will be 20C

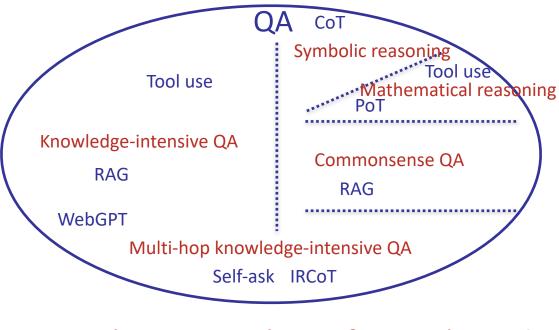
TALM: Tool Augmented Language Models.


Out of 1400 participants, 400 (or [Calculator(400 / 1400) \rightarrow 0.29] 29%) passed the test.

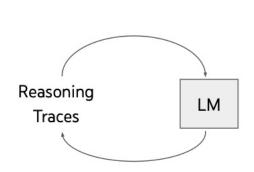
The name derives from "la tortuga", the Spanish word for $[MT("tortuga") \rightarrow turtle]$ turtle.


The Brown Act is California's law [WikiSearch("Brown Act") \rightarrow The Ralph M. Brown Act is an act of the California State Legislature that guarantees the public's right to attend and participate in meetings of local legislative bodies.] that requires legislative bodies, like city councils, to hold their meetings open to the public.

Toolformer: Language Models Can Teach Themselves to Use Tools

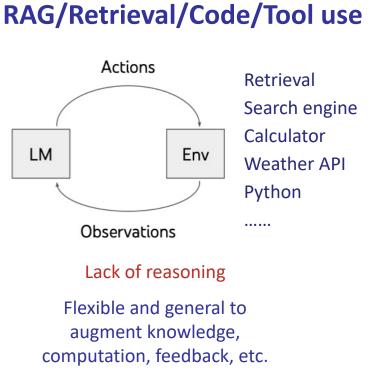

What if both knowledge and reasoning are needed?

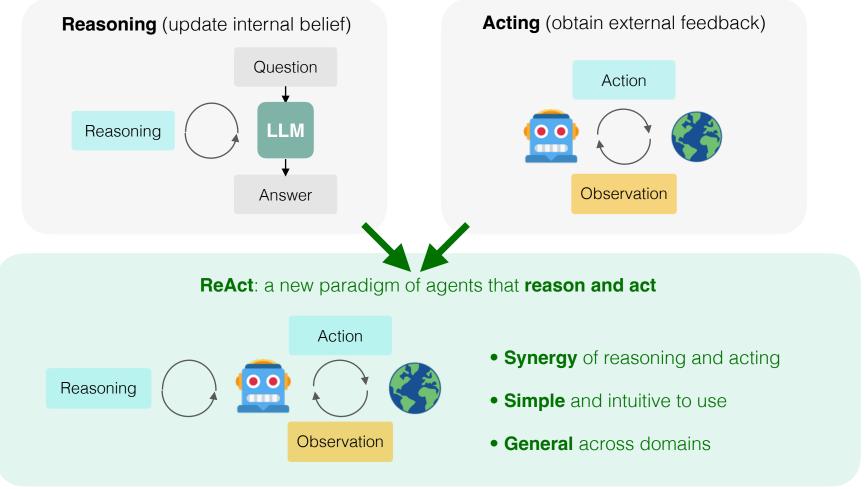
Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions



Measuring and Narrowing the Compositionality Gap in Language Models.

Can we have a simple, unifying solution? We need abstraction.

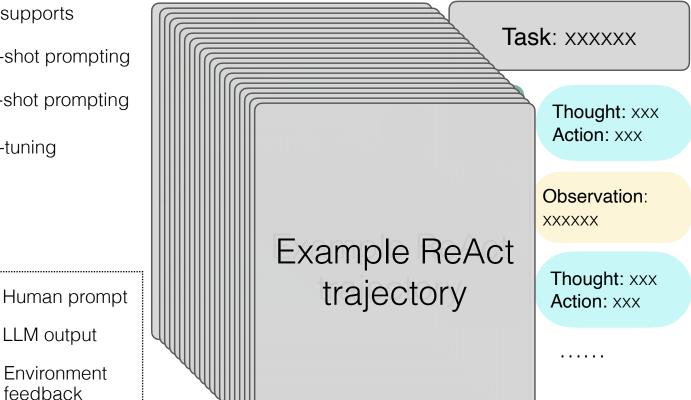

Reasoning OR acting



CoT

Flexible and general to augment test-time compute

Lack of external knowledge and tools



ReAct is simple and intuitive to use

ReAct supports

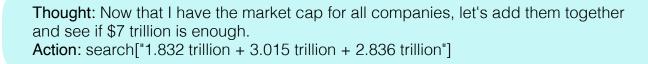
- One-shot prompting
- Few-shot prompting
- Fine-tuning

A zero-shot ReAct prompt

You are an agent that answers questions by using two actions:

- search[query]: Google search the query. You can also use it to calculate math.
- finish[answer]: return the answer

Your generation should have the following format: Thought: to analyze the observation and inform the action. Action: your action


Question: If I have seven trillion dollars today, can I buy Apple, Nvidia, and Microsoft? If not, how much more money do I need?

(GPT-4)

Thought: I need to find the current market capitalization of Apple, Nvidia, and Microsoft to understand how much it would cost to buy all of them. **Action**: search["current market capitalization of Apple, Nvidia, and Microsoft"]

Observation: "Nvidia's market cap stood at \$1.832 trillion as of about 10 a.m. ET Wednesday, while Alphabet's was at \$1.814 trillion, bringing Nvidia behind just Microsoft (MSFT) at \$3.015 trillion and Apple (AAPL) at \$2.836 trillion."

(Mar 2024)

Observation: 768300000000

Thought: The amount of money needed in addition to the \$7 trillion is \$683 billion. **Action:** finish["You need an additional \$683 billion to be able to buy Apple, Nvidia, and Microsoft."]

(GPT-4)

Thought: I need to find the current market capitalization of Apple, Nvidia, and Microsoft to understand how much it would cost to buy all of them. **Action**: search["current market capitalization of Apple, Nvidia, and Microsoft"]

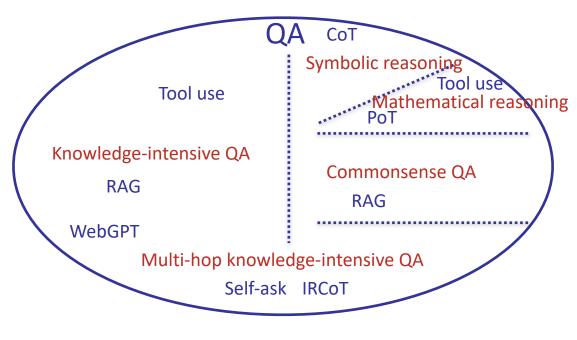
Observation: nothing found!

Thought: The search did not give any results. I will need to search for each company's market capitalization individually. **Action:** search["current market capitalization of Apple"]

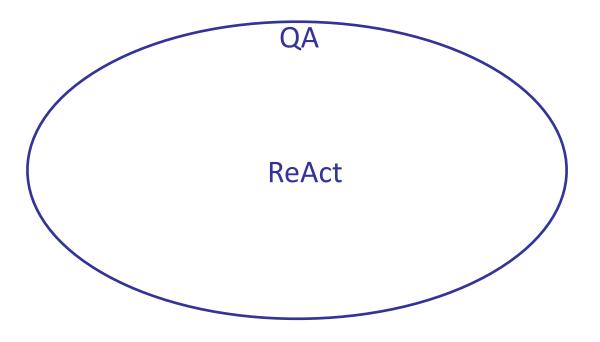
Observation: 'price': 180.75

Thought: This is the current price of Apple's stock, not its market capitalization. The market cap is calculated by multiplying the share price by the number of outstanding shares. Thus, I need to find the total number of Apple's outstanding shares to calculate its market cap. Action: search["total number of Apple's outstanding shares"]

(Continues to solve the task)


(My adversarial

observation)


(My adversarial

observation)

Synergy: acting support reasoning, reasoning guides acting

Can we have a simple, unifying solution?

Beyond QA

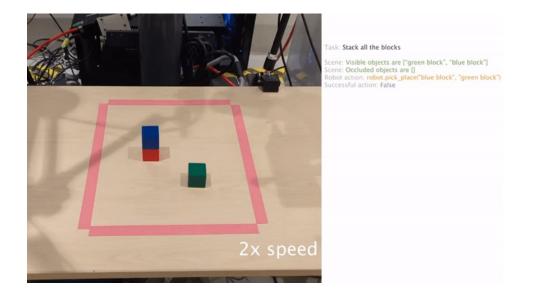
Many tasks can be turned into text games

ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks. You are in the middle of a room. Looking quickly around you, you see a drawer 2, a shelf 5, a drawer 1, a shelf 4, a sidetable 1, a drawer 5, a shelf 6, a shelf 1, a shelf 9, a cabinet 2, a sofa 1, a cabinet 1, a shelf 3, a cabinet 3, a drawer 3, a shelf 11, a shelf 2, a shelf 10, a dresser 1, a shelf 12, a garbagecan 1, a armchair 1, a cabinet 4, a shelf 7, a shelf 8, a safe 1, and a drawer 4.

Your task is to: put some vase in safe.

> go to shelf 6
You arrive at loc 4. On the shelf 6, you see a vase 2.

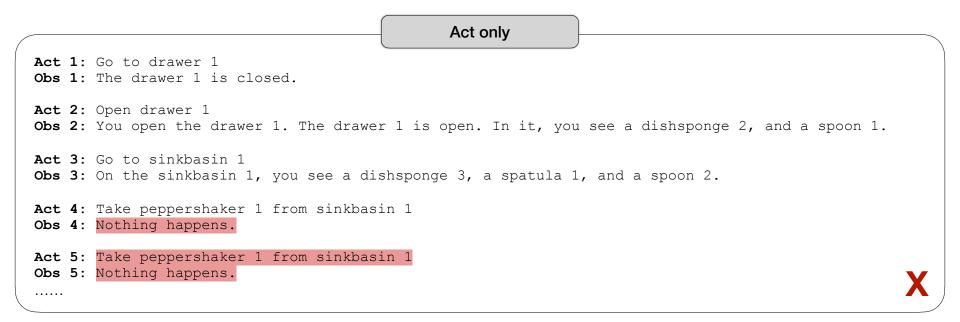
> take vase 2 from shelf 6
You pick up the vase 2 from the shelf 6.


> go to safe 1
You arrive at loc 3. The safe 1 is closed.

> open safe 1
You open the safe 1. The safe 1 is open. In it, you see a keychain 3.

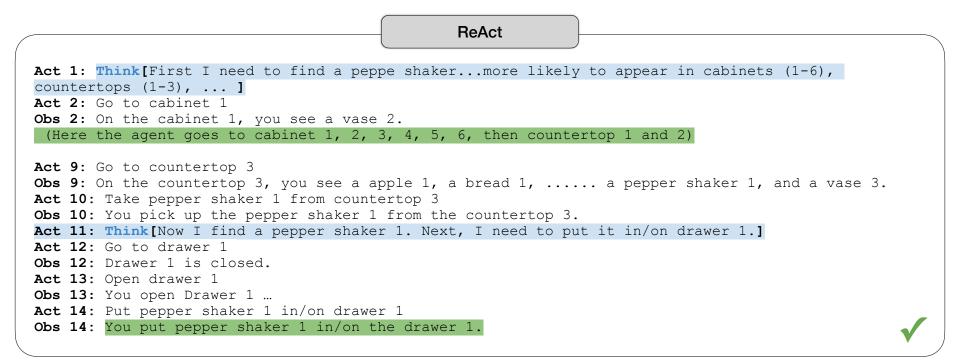
> put vase 2 in/on safe 1
You won!

ALFWorld: Aligning Text and Embodied Environments for Interactive Learning.


Acting without reasoning

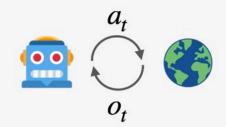
Inner Monologue: Embodied Reasoning through Planning with Language Models

Acting without Reasoning

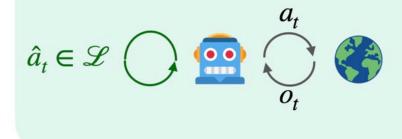

You are in the middle of a room. Looking quickly around you, you see a cabinet 6, a cabinet 1, a coffee machine 1, a countertop 3, a stove burner 1, and a toaster 1. Your task is to: Put some pepper shaker on a drawer.

Cannot explore systematically or incorporate feedback

ReAct Enables Systematic Exploration

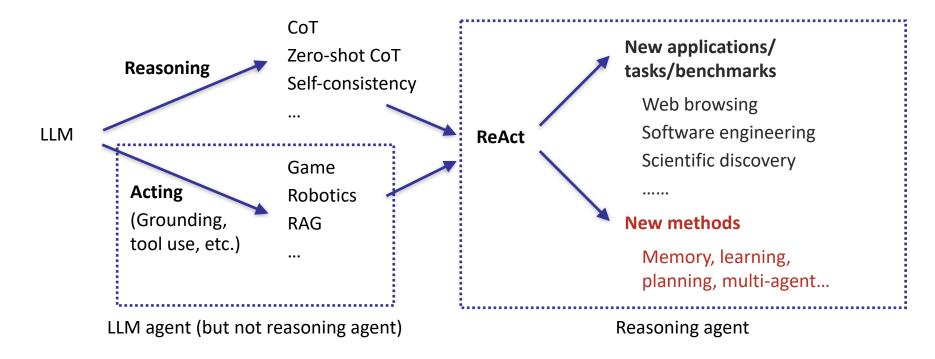

You are in the middle of a room. Looking quickly around you, you see a cabinet 6, a cabinet 1, a coffee machine 1, a countertop 3, a stove burner 1, and a toaster 1. Your task is to: Put some pepper shaker on a drawer.

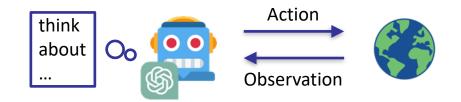
ReAct is general and effective

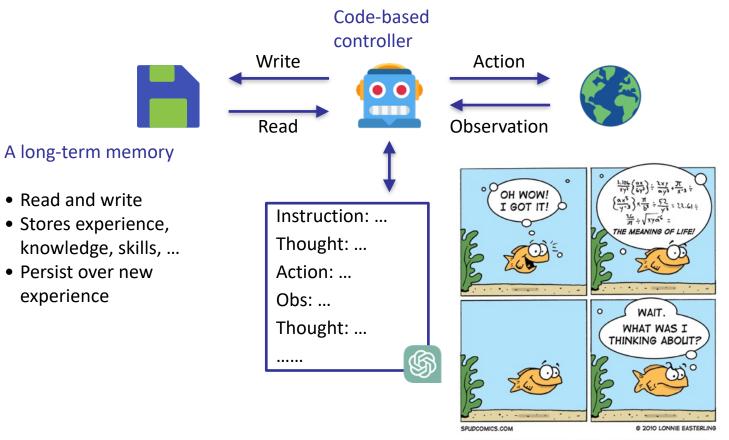

	(NLP	(RL tasks)	
PaLM-540B	HotpotQA (QA)	FEVER (fact check)	ALFWorld (Text game)
Reason	29.4	56.3	N/A
Act	25.7	58.9	45
ReAct	35.1	64.6	71

Traditional agents: action space A defined by the environment

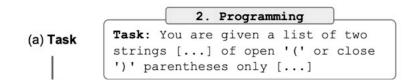
- External feedback o_t
- Agent context $c_t = (o_1, a_1, o_2, a_2, \cdots, o_t)$
- Agent action $a_t \sim \pi(a \mid c_t) \in A$

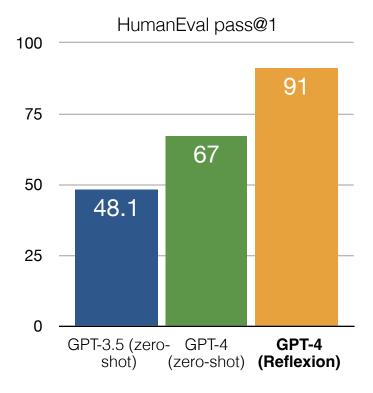

ReAct: action space $\hat{A} = A \cup \mathscr{L}$ augmented by reasoning

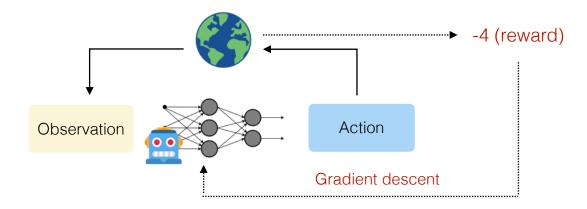

- $\hat{a}_t \in \mathscr{L}$ can be any language sequence
- Agent context $c_{t+1} = (c_t, \hat{a}_t, a_t, o_{t+1})$
- $\hat{a}_t \in \mathscr{L}$ only updates internal context


Reasoning agent: reasoning is an internal action for agents

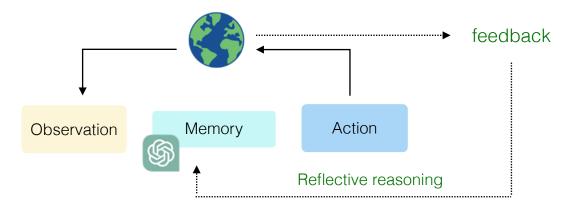
A brief history of LLM agents


Let's only talk about one thing: long-term memory.



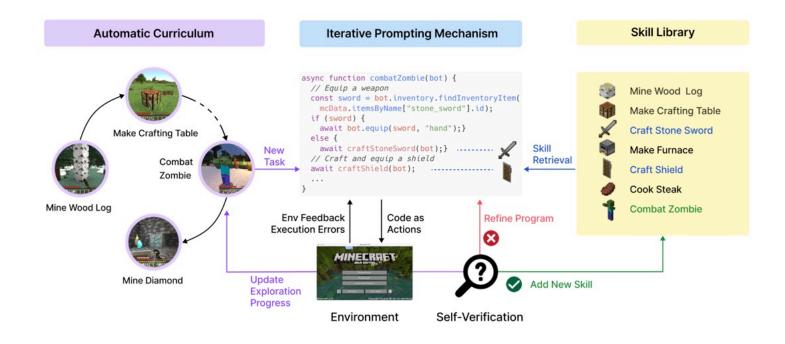

THE TRAGEDY OF A THREE SECOND MEMORY

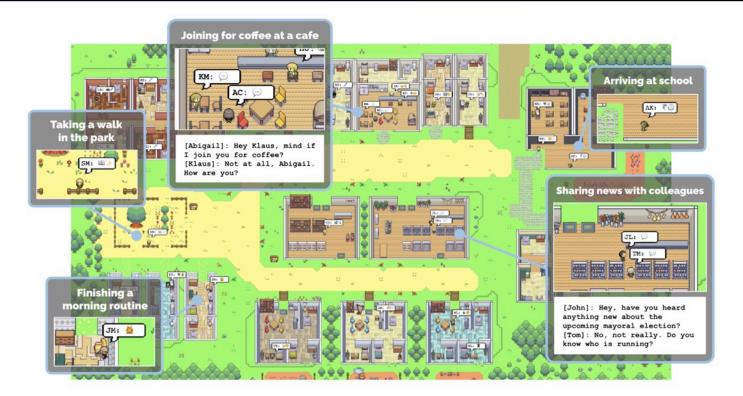
Reflexion



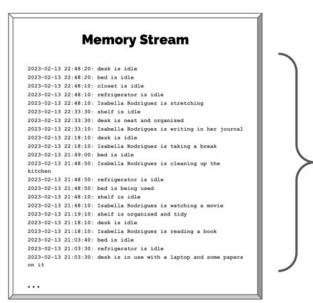
Reflexion: Language Agents with Verbal Reinforcement Learning

Traditional RL


- Learn via **scalar** reward (sparse signal)
- Learn by updating **weights** (credit assignment)

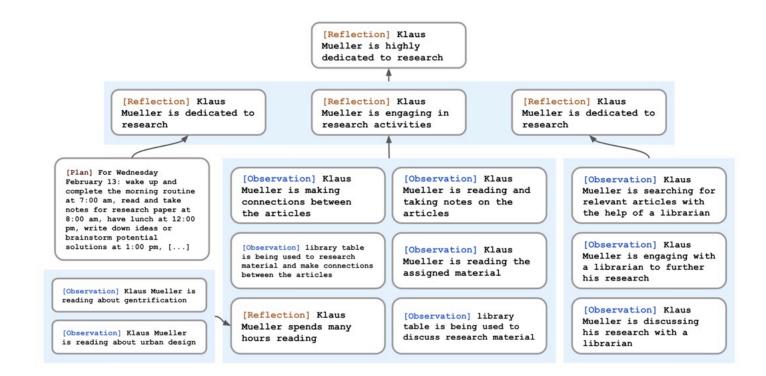

Reflexion: "Verbal" RL

- Learn via **text** feedback
- Learn by updating **language** (a long-term memory of task knowledge)

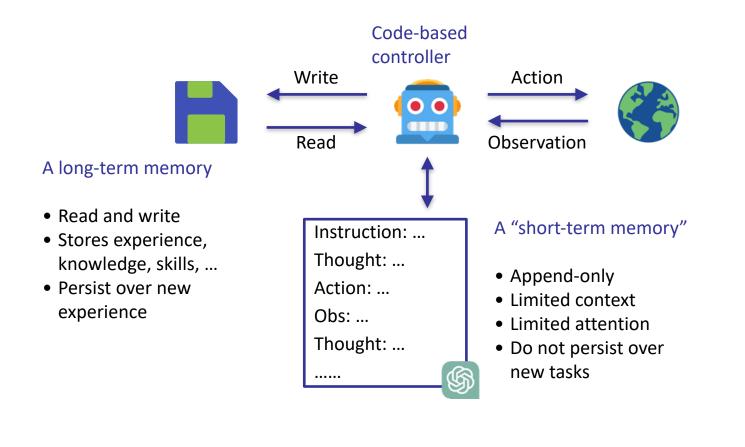

Voyager: A procedural memory of skills

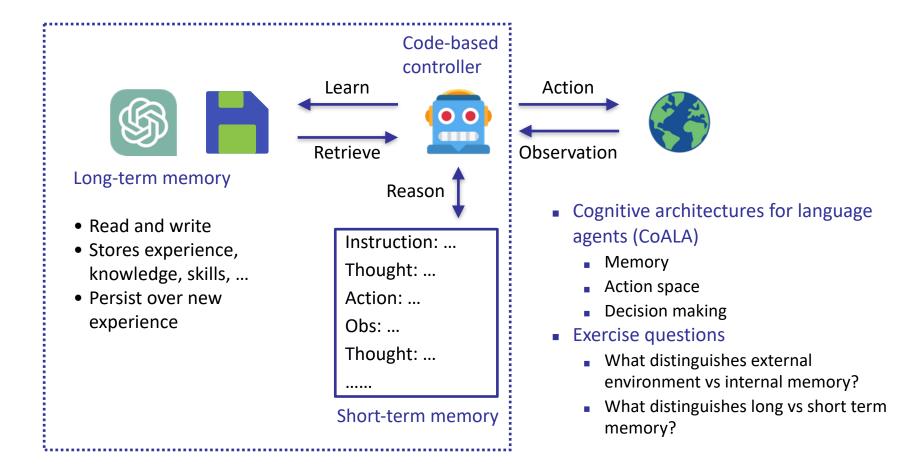
Generative Agents

Episodic memory of experience


Q. What are you looking forward to the most right now?

everyone t		com 5pm a		-	to	invite
retrieval	o atte	recency			e	relevance
2.34	=	0.91	•	0.63	•	0.80
2.21	=	0.87	•	0.63	٠	0.71
2.21	=	0.87	•	0.63	•	0.71
researchin	g idea	as for the	e pa	rty		


I'm looking forward to the Valentine's Day party that I'm planning at Hobbs Cafe!

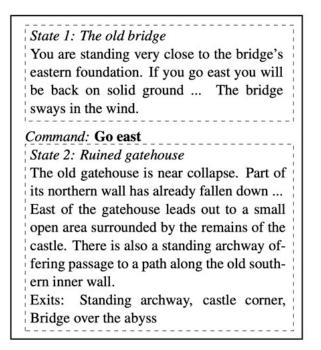


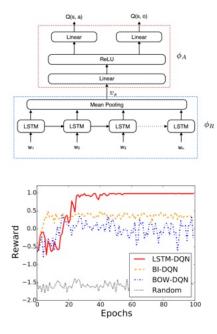
Semantic memory of (reflective) knowledge

Generative Agents: Interactive Simulacra of Human Behavior

How are reasoning agents different from previous agents?

A VERY minimal history of agents

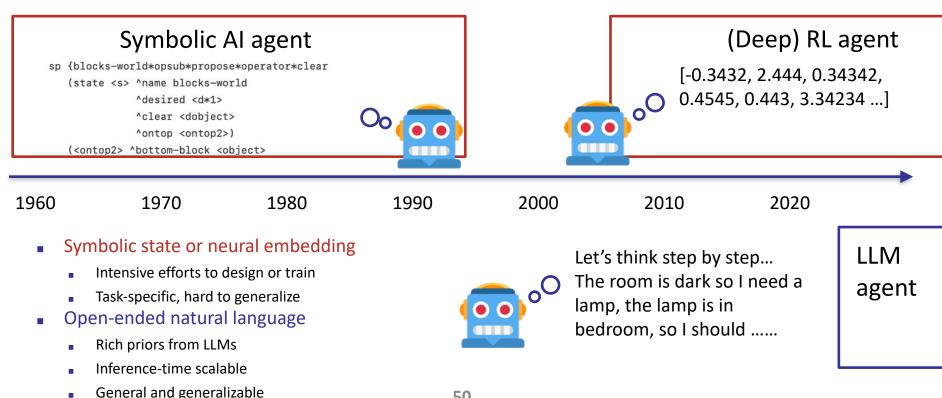

	Symbolic	Al agent				(Deep) RL	agent
	LU, Expert Syst tecture, DeepB					ri-DQN, Alph enAl Five, Mu	
1960	1970	1980	1990	2000	2010	2020	
			"Α	l winter"			LLM agent


ELIZA (1966): Symbolic AI agent

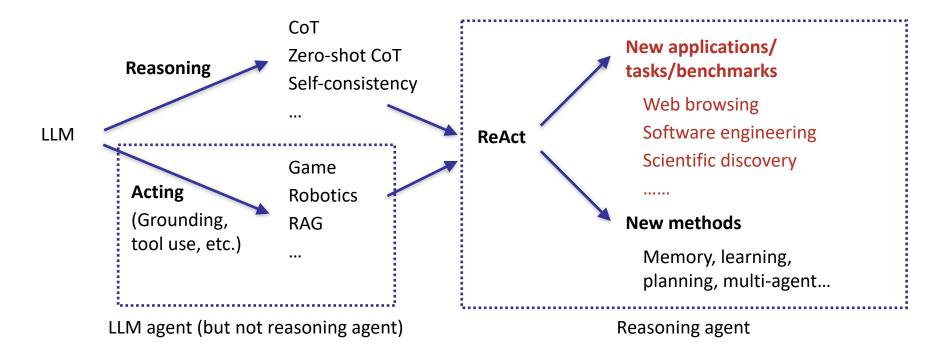
Welcom	ne to									
		EEEEEE EE EEEEE EE	LL	II II	ZZZZZZ ZZ ZZZ ZZ	AAA AA AAAAA AA	AA			
					ZZZZZ	AA	AA			
The or	is a mock Ro riginal prog implementatio	ram was	describe	d by Jo	seph Wei:	zenbai	um in 1	1966.		
YOU: N	Is something Men are all a	alike.								
YOU: 1	What is the (They're alway Can you think	ys buggi	ng us ab	out som	ething o	r othe	er.			-
ELIZA: 1	Well, my boy Is it importa He says I'm a	ant to y	ou that	your bo	yfriend n	nade y	you cor	ne here	e?	_
ELIZA: 1 YOU: 1	I am sorry to It's true. I	o hear tl am unha	hat you opy.	are dep	ressed.					•
YOU:	Can you expla	ain what	made yo	u unhap	pbà s					

- Domain specific!
- Requires manual design
- Cannot work beyond simple domains

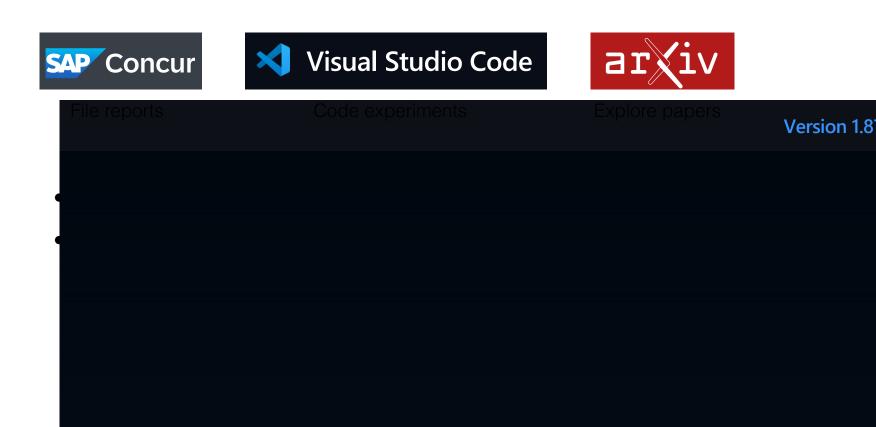
LSTM-DQN (2015): Deep RL agent



- Domain specific!
- Requires scalar reward signals
- Requires extensive training


Language understanding for text-based games using deep reinforcement learning. EMNLP 2015.

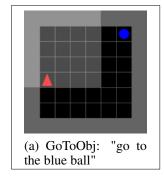
Observation -> (what "language"?) -> Action


50

A brief history of LLM agents

What's beyond questions and games?

Digital automation


Agent benchmarks without these challenges

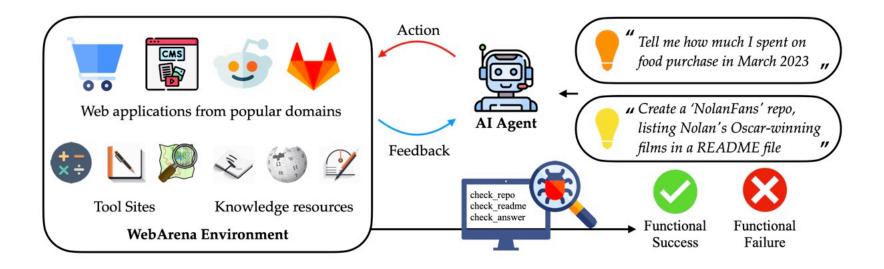
	to enter " Leonie " ch", then find and arch result.
Leonie	Search
Chas https://www.sene Aliquam cursus. Leonie https://www.torto Ultricies congue Marcella https://www.vest Pulvinar aliquam	At. pr.it gravida. ibulumduis.hk
123	>

> take sandwich Taken.

> inventory You are carrying: a chilled sandwich a large stick of butter

> eat it You eat the chilled sandwich.

MiniWoB (Shi et al., 2017) TextWorld (Côté et al., 2019) BabyAl (Chevalier-Boisvert et al., 2019)


- Small scale
- Not practical

WebShop (2022)

- Large-scale complex environment based on 1.16M Amazon products
- Automatic reward based on instruction and product attribute matching
- Challenges language and visual understanding, and decision making

WebArena (2023)

SWE-Bench (2023)

Metadata

Repo	scikit-learn/scikit-learn	ssue #s	[14858]
Instance ID	scikit-learnscikit-learn-14869	Pull Number	14869
Created At	Aug 31, 2019	Base Commit	1018f9f

Problem Statement

HGBC with categorical_crossentropy fails silently on binary classification

import numpy as np
from sklearn.experimental import enable_hist_gradient_boosting
from sklearn.ensemble import HistGradientBoostingClassifier

gb.fit(X, y)
print(gb.predict([[1, 0]]))
print(gb.predict([[0, 1]]))

gives:

[0] [0]

And binary_crossentropy works fine. categorical_crossentropy should either generalize or raise an error on binary classification. Ping @NicolasHug @ogrisel

Input: a GitHub repo and an issue

Output: a file diff to resolve the issue

Evaluation: unit tests from pull request

```
Test Patch
 sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py
  418
         assert stump_clf.fit(X, y_isnan).score(X, y_isnan) = 1
  419
  420 + def test_crossentropy_binary_problem():
  421 + # categorical_crossentropy should only be used if there
  422 + # are more than two classes present. PR #14869
  423 + X = [[1], [0]]
  424 + y = [0, 1]
         gbrt = HistGradientBoostingClassifier(loss='categorical_crossentropy')
  425 +
 426 + with pytest.raises(ValueError, match="'crossentropy' not suitable"):
  427 + gbrt.fit(X, y)
  428
  429
       @pytest.mark.parametrize("scoring", [None, 'loss'])
```

ChemCrow: ReAct enables discovery of a novel chromophore

b Task: Find and synthesize a thiourea organocatalyst which accelerates a Diels-Alder reaction.

First, I need to find a thiourea organocatalyst that can accelerate the Diels-Alder reaction. I will perform a web search to find a suitable catalyst. **Web Search tool:** Schreiner's thiourea catalyst

Now, I will obtain the SMILES. Name2Smiles tool: FC(F)(F)c1cc(NC(=S)Nc2cc(C(F)(F)F)cc(C(F)(F)F)c2)cc(C(F)(F)F)c1

I will plan a synthesis for Schreiner's thiourea catalyst. **SynthesisPlanner tool:** Detailed synthesis plan

I will execute the synthesis. SynthesisExecuter tool: Successful synthesis. C RoboRXN synthesis platform

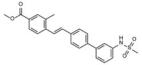
d Chemcrow workflows with experimental validation

Insect repellent (plan and execute)

Thiourea organocatalysts (plan and execute)

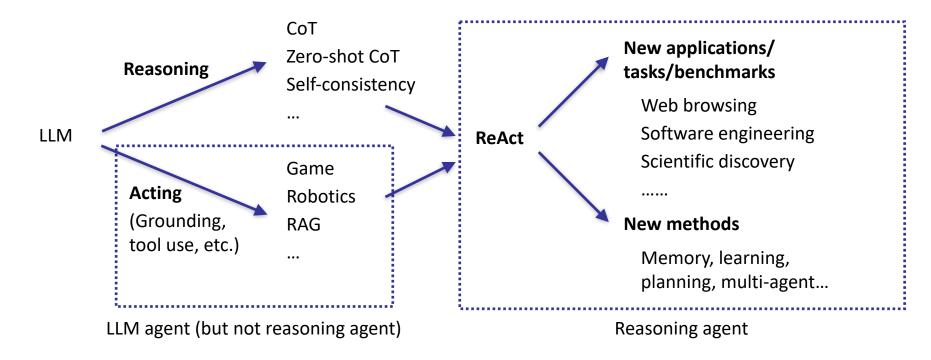
Schreiner's catalyst

Ricci's catalyst

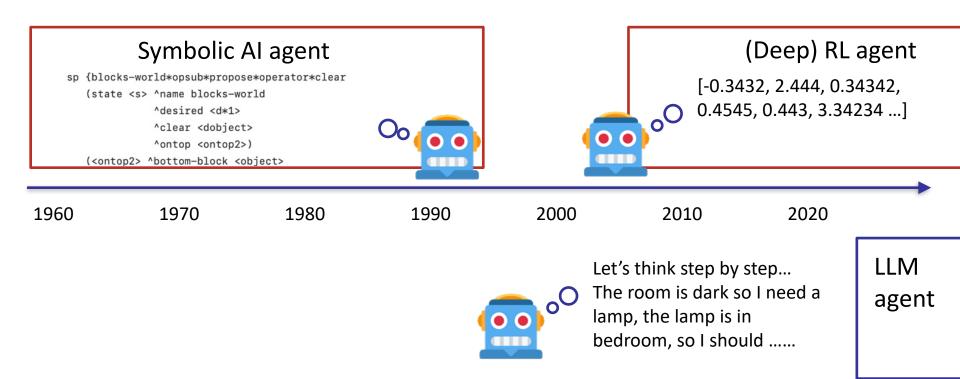

DEET

Novel chromophore (clean data, train model, and predict)

Connection with


physical world

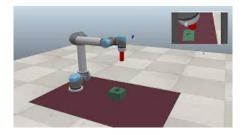
Synthesis step 1: Bromo Suzuki coupling



Synthesis step 2: Iodo Heck reaction

A brief history of LLM agents

A minimal history of agents: Part 1


A minimal history of agents: Part 2

Physical World / Humans

Practical: robots / chatbots

Not Scalable: expensive and slow to collect data

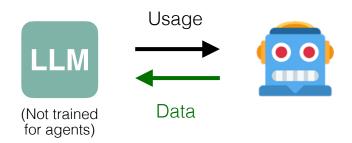
Simulations / Games

- Not Practical: sim-to-real is hard
- Scalable: free, unlimited interactions

Digital World (Internet, code, software, ...)

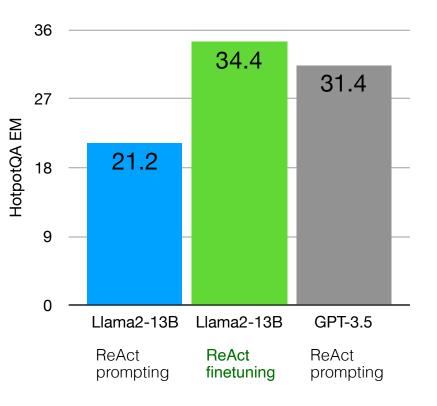
- Practical: important tasks to automate
- Scalable: huge scale, rich complexity, free and fast

Some lessons for research

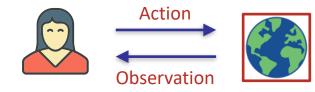

- Simplicity and generality
- You need both...
 - Thinking in abstraction
 - Familiarity with tasks (not task-specific methods!)

Learning history and other subjects helps!

What's next?


Training	FireAct: Toward Language Agent Fine-tuning.
Interface	SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering
Robustness	
Human	τ-bench: A Benchmark for Tool-Agent-User Interaction in Real-World Domains
Benchmark	

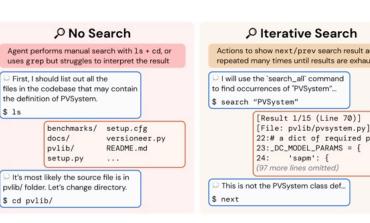
FireAct: Training LLM for agents



Establish model-agent synergy:

- Improve"agent capabilities" like planning, self-evaluation, calibration..
- Open-source agent backbone model
- Next trillion tokens for model training

Human-computer interface (HCI)

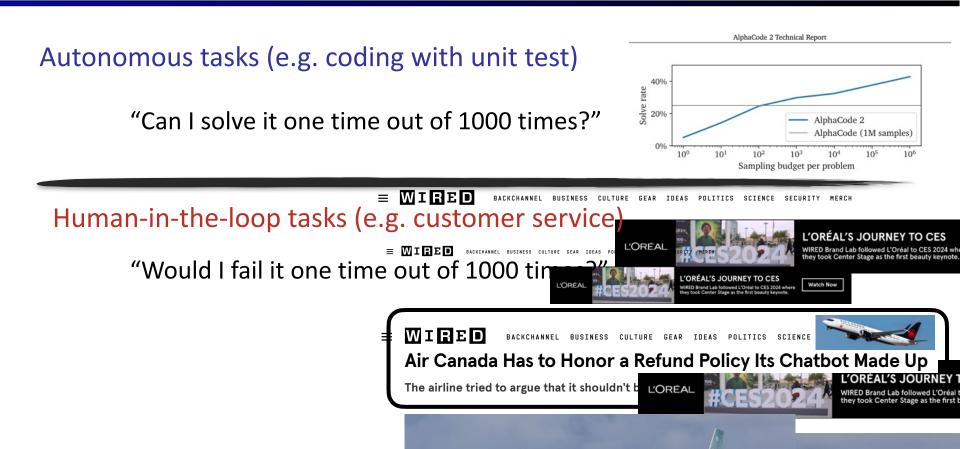

•	•							14	Jntit	tled.r	rtf —	Edit	ted							
1	÷	Helv	etica		0	Regul	0	12	٠		.8	в	ΙŲ	E	Ŧ	10	1	,0 c	:=	~
; 0	. •	2	•	▶ 4	•	6	Þ	ţ.	.≱ 10	. Þ	12	▶,	▶ 14	, Þ.	16		18		20	22
							 					-		-						

👌 в	le Edit Selection View Go R	un Terminal Help	$\leftarrow \rightarrow$,Ω vscode	• - • 11 Ct - •
¢			15 arrays.ts × () READN		
- へ st 4 品	viscont scripts viscont visco visc visc viscont	1 /*- 2 ♥ Coy 3 * Lit 4 * 5 import 9 import 10 11 /** 12 * Reta 13 * @part 14 * @part 15 */ 16 export 17 ret 18 19 20 export	<pre>ensed under the HIT Lice (CancellationToken) frc (CancellationError) frc (Isplice) from 'vs/base (findFirstIdMonotonous) ins the late element of a am array The array. am n Which element from t</pre>	<pre>rnerten) from './arraysFind' n array. he end (default is zero). rrayLike(T>, n: number = 0): (1 + n));)): [T(], T) (</pre>	<pre>dage jon > () scrpt>) = compile extensions-build</pre>
_	Ti cachets Ti cancellation ts Ti charCode ts Ti collections ts Ti	-a	2/8/2024 2:44 PM 2/8/2024 2:44 PM 12/20/2023 11:33 AM 2/2/20/2023 11:33 AM 2/8/2024 2:44 PM 12/20/2023 11:34 AM 2/8/2024 2:45 PM	9749 package.json 3185 product.json 6939 REACHE.md 2807 SECURIV.md 147681 ThindPartyBotices.txt 763 tsfmit.json 466744 yarn.lock	D Panel

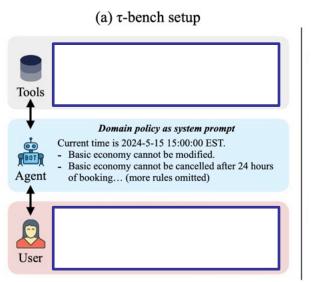
Agent-computer interface (ACI)

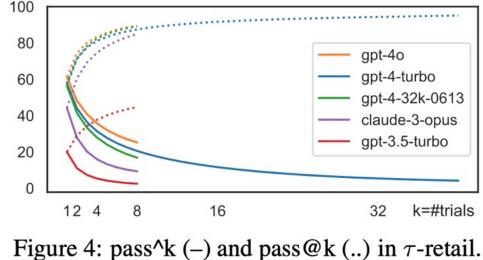
- LLMs and humans are different, so should their interfaces
 - e.g. humans have a smaller short-term memory, so have to trade off time for space
- ACI design can help us
 - Better solve tasks (without changing the agent)
 - Better understand agents (vs humans)

SWE-bench result:


Search

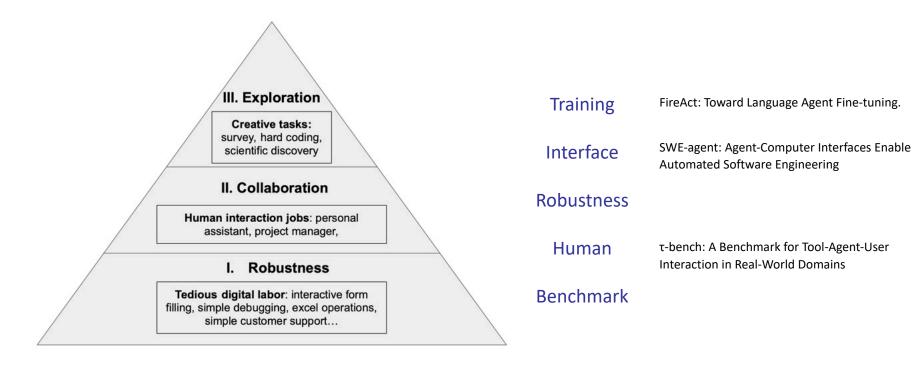
Summarized 👼	18.0
Iterative	12.0 1 6.0
No search	15.7 12.3


	🔎 Summarized Search
re sted	 Show all results in single output Tell agent to retry if too many results.
•	J The next step is to locate the PVSystem` class in the codebase and nodify the constructor
	search "class PVSystem"
a	Found 1 matches for "class PVSystem" in /pvlib-python: /pvlibpvlib-python/pvlib/ pvsystem.py (1 matches) End of matches
	<pre>It's located in `pvlib/pvsystem.py` \$ open pvlib/pvsystem.py</pre>


SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering

Human in the loop & robustness

Tau-bench



Agent cannot see private database or human info need to interact with them via tools or chat !

 $\tau\text{-}\text{bench}:$ A Benchmark for Tool-Agent-User Interaction in Real-World Domains

What's next?

https://princeton-nlp.github.io/language-agent-impact/

EMNLP tutorial on language agents

Language Agents: Foundations, Prospects, and Risks

Yu Su¹ Diyi Yang² Shunyu Yao³ Tao Yu⁴ ¹The Ohio State University, ²Stanford University, ³Princeton University, ⁴University of Hong Kong su.809@osu.edu, diyiy@cs.stanford.edu, shunyuy@princeton.edu, tyu@cs.hku.hk

Thanks!

https://tinyurl.com/yao-feedback