Google DeepMind

AlphaProof

When RL meets Formal Maths

TTTTTTTTTTTTTTTTTTTTTT

R AlphaProof

We have used maths to
both

the natural
world

Mathematics, a root node to intelligence?

Reasoning & Generalisation &

Planning Abstraction

Knowledge & Open ended &

Creativity Unbounded complexity

Even requires an eye for beauty...

A Brief History of Formalisation in Mathematics

Proofs & Axiomatisation

Importance of proofs discovered by the
ancient Greeks

Since then, what constitutes a
mathematical proof has evolved.

A Brief History of Formalisation in Mathematics

Proofs & Axiomatisation From words to symbols
Importance of proofs discovered by the A square and ten times its root are equal to thirty-nine.
ancient Greeks 22 + 10z = 39

. . Take the coefficient of the root, divide it into two parts,
Since then,’ what constitutes a and multiply one of them by itself.
mathematical proof has evolved. Add this to thirty-nine
Take the square root of sixty-four which is eight
Subtract from this one of the halves of the coefficient of
the root.
The result is the value of the root which is three.

A Brief History of Formalisation in Mathematics

Proofs & Axiomatisation From words to symbols

Importance of proofs discovered by the A square and ten times its root are equal to thirty-nine.

ancient Greeks z? + 10z = 39

Si th hat titut Take the coefficient of the root, divide it into two parts,
Ince then, what constitutes a and multiply one of them by itself.

mathematical proof has evolved. Add this to thirty-nine

Take the square root of sixty-four which is eight
Subtract from this one of the halves of the coefficient of

the root.
The result is the value of the root which is three.

b /b2
—§:|: B) — C

A Brief History of Formalisation in Mathematics

Rigor and clarity

Efficiency and Communication
Abstraction and Generalisation
Unification

Created new fields

GO ON -

yrem exists_infinite_primes (n : N) : 3 p, n = p A Prime p :=
let p := minFac (n ! + 1)

Computer Formalisation R B A g e
of Mathematics

Mathematics in code

v Expected type

n: N
p:N:=(n! + 1).minFac
fl:n! +1=1
pp : Prime p
3 p, n=pA Prime p

Lean

Lean is a programming language,
theorem prover, and interactive proof

assistant. —\

It has a vibrant open source community \/
of mathematicians.

Lean has been used to formalize fields
medal mathematics.

A huge quest the community is on it to Theorem Prover
build the math library of the future.

Programming Language and

https://leanprover.zulipchat.com/
https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728/
https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728/
https://www.quantamagazine.org/building-the-mathematical-library-of-the-future-20201001/

Mathlib

Built open source on own free time D T
of mathematicians! Ry g &..@;mwuw.m

It aims to be General & Unified. : . s G

.o :
. s .
., e Y

Covers ~ 80% undergrad curriculum

Most of the library is above Group Theory* ,
undergraduate but has irregular
coverage with big holes.

-t

Field Theory ~..‘ 3

omputer Formalisation unlocks enormous synergies

Perfect Verification + Software Stack

Instant Wins
- Correctness concerns disappear
- Giant Proofs can be trusted
- Proof checking can be delegated entirely to the
computer

Game Changer
- Transforms mathematics into a video game &!
- For Education
- All the tools of Software Engineering for Maths
- Unlocks Massive Collaboration

A pilot project in universal algebra to explore new
ways to collaborate and use machine assistance?

math.RA, polymath Artificial Intelligence, Equational Theory Project,
machine assisted proof, universal algebra | by Terence Tao

Traditionally, mathematics research projects are conducted by a small number
(typically one to five) of expert mathematicians, each of which are familiar
enough with all aspects of the project that they can verify each other’s
contributions. It has been challenging to organize mathematical projects at
larger scales, and particularly those that involve contributions from the general
public, due to the need to verify all of the contributions; a single error in one
component of a mathematical argument could invalidate the entire project.
Furthermore, the sophistication of a typical math project is such that it would not
be realistic to expect a member of the public, with say an undergraduate level of
mathematics education, to contribute in a meaningful way to many such
projects.

For related reasons, it is also challenging to incorporate assistance from modern
Al tools into a research project, as these tools can “hallucinate” plausible-
looking, but nonsensical arguments, which therefore need additional verification
before they could be added into the project.

Proof assistant languages, such as Lean, provide a potential way to overcome
these obstacles, and allow for large-scale collaborations involving professional
mathematicians, the broader public, and/or Al tools to all contribute to a
complex project, provided that it can be broken up in a modular fashion into
smaller pieces that can be attacked without necessarily understanding all aspects
of the project as a whole. Projects to formalize an existing mathematical result
(such as the formalization of the recent proof of the PFR conjecture of Marton,
discussed in this previous blog post) are currently the main examples of such
large-scale collaborations that are enabled via proof assistants. At present, these
formalizations are mostly crowdsourced by human contributors (which include
both professional mathematicians and interested members of the general
public), but there are also some nascent efforts to incorporate more automated
tools (either “good old-fashioned” automated theorem provers, or more modern
Al-based tools) to assist with the (still quite tedious) task of formalization.

However, I believe that this sort of paradigm can also be used to explore new
mathematics, as opposed to formalizing existing mathematics. The online
collaborative “Polymath” projects that several people including myself organized
in the past are one example of this; but as they did not incorporate proof
assistants into the workflow, the contributions had to be managed and verified
by the human moderators of the project, which was quite a time-consuming
responsibility, and one which limited the ability to scale these projects up further.
But I am hoping that the addition of proof assistants will remove this bottleneck.

Challenges for Computer Formalisation

Only 0.1%-1% of mathematicians have adopted Lean.

Not yet a good tool for mainstream research
- Steep Learning Curve
- Significant Time Investment
- Tooling and Library maturity (though rapidly growing)
- Perceived lack of necessity for research.

Demo - Infinitude of Primes

mathlib4 > Mathlib > Data > Nat > Prime > = Infinite.lean > {} Nat > {} Infinite
pace Nat
n Infinite

3 p, n<p A Prime p := by

exists_infinite_primes (n :

T
p := minFac (n ! + 1)

e fl : n! +1#1 :=ne_of_gt <| succ_lt_succ <| factorial_pos _
pp : Prime p := minFac_prime f1

np : nsp:=

1 h =
! 1= dvd_factorial (minFac_pos _) h

le_of_not_ge fur
(Nat.dvd_add_iff_right hi).2 (minFac_dvd _)

ve h : p | n
f h2 pl1l:=
pp.not_dvd_one h:
e p

v Infinite.lean:39:0
v Tactic state

N
» All Messages (0)

Demo - Infinitude of Primes

mathlib4 > Mathlib > Data > Nat > Prime > = Infinite.lean > {} Nat > {} Infinite
ce Nat
Infinite

Theorem Statement

= minFac !
e fl : n! +1#1 :=ne_of_gt <| succ_lt_succ <| factorial_pos _
> pp : Prime p := minFac_prime f1
e np : N sp:=
le_of_not_ge fun h =>
) ! 1= dvd_factorial (minFac_pos _) h

> n
have hz : 1 := (Nat.dvd_add_iff_right hi1).2 (minFac_dvd _)
pp.not_dvd_one h:

e p

¥ Infinite.lean:39:0

¥ Tactic state

» All Messages (0)

Demo - Infinitude of Primes

mathlib4 > Mathlib > Data > Nat > Prime > = Infinite.lean > {} Nat > {} Infinite
pace Nat
n Infinite

ne_of_gt <| succ_lt_succ <| factorial_pos

:n! +1#1:=
pp : Prime p := minFac_prime f1
np iD= pri=

le_of_not_ge fun h =>

ve hi | ! 1= dvd_factorial (minFac_pos _) h
|

p
h2 : p (Nat.dvd_add_iff_right hi).2 (minFac_dvd _)

pp.not_dvd_one h:

n
1 :=

v Infinite.lean:39:0
v Tactic state

N
» All Messages (0)

Demo - Infinitude of Primes

mathlib4 > Mathlib > Data > Nat > Prime > = Infinite.lean > {} Nat > {} Infinite

Language-based, high-level syntax, mirroring normal mathematics

n exists_infinite_primes (n : N) : 3 p, n < p A Prime p := by
et p := minFac (n ! + 1)
e fl : n! +1#1 :=ne_of_gt <| succ_lt_succ <| factorial_pos _
> pp : Prime p := minFac_prime f1
e np : N sp:=
le_of_not_ge fun h =>
1ave n ! := dvd_factorial (minFac_pos _) h
have hz : 1 := (Nat.dvd_add_iff_right hi1).2 (minFac_dvd _)
pp.not_dvd_one h:
e p

¥ Infinite.lean:39:0

¥ Tactic state

» All Messages (0)

Demo - Infinitude of Primes

v Infinite.lean:31:2

¥ Tactic state

= Infinite.lean > {} Nat > {} Infinite

mathlib4 > Mathlib > Data > Nat > Prime >
espace Nat
Infinite
p: - ! + 1).minFac
p A Prime p

tion

exists_infinite_primes (n : N) I p, nspAPrime p :
» All Messages (1)

p := minFac (n ! + 1)

Demo - Infinitude of Primes

mathlib4 > Mathlib > Data > Nat > Prime > = Infinite.lean > {} Nat > {} Infinite ¥ Infinite.lean:32:2
oo N

s Tactic state
tion Infinite

(n ! + 1).minFac
''+121
< p A Prime p

em exists_infinite_primes (n : N) : 3 p, n < p A Prime p := |
p := minFac (n ! + 1)

ve f1 : n! + 1 # 1 := ne_of_gt <| <| factorial_pos _

» All Messages (1)

Demo - Infinitude of Primes

mathlib4 /google/src/cloud/tkhubert/subgoal/google3/third_party/lean4/mathlib4/Mathlib/Data/Na v Infinite.lean:33:2
t/Prime/Infinite.lean - 1 problem in this file

. Tactic state
Infinite

n:N
p:N:=(n! + 1).minFac
1 exists_infinite_primes (n : N) : 3 p, n s p A Prime p := by fl:n!+1=#1
:= minFac (n ! + 1)

pp : Prime p
e fl:n!+1#1:=ne_of_gt<| succ_lt_succ <| factorial_pos _ ip, n=

< p A Prime p
> pp : Prime p := minFac_prime f1

» All Messages (1)

Demo - Infinitude of Primes

mathlib4 > Mathlib > Data > Nat > Prime > = Infinite.lean > {} Nat > {} Infinite
pace Nat
n Infinite

3 p, n<p A Prime p := by

exists_infinite_primes (n :

T
p := minFac (n ! + 1)

e fl : n! +1#1 :=ne_of_gt <| succ_lt_succ <| factorial_pos _
pp : Prime p := minFac_prime f1

np : nsp:=

1 h =
! 1= dvd_factorial (minFac_pos _) h

le_of_not_ge fur
(Nat.dvd_add_iff_right hi).2 (minFac_dvd _)

ve h : p | n
f h2 pl1l:=
pp.not_dvd_one h:
e p

¥ Infinite.lean:39:0

» All Messages (0)

Computer Formalisation

Huge enthusiasm from a vibrant community
Building the library of the future
Unlocks enormous synergies

Still has some way to go

Belief this will inevitably play an integral role in the future of
Mathematics

Action

Reinforcement

Learning

Reward and
Observation

What's RL

RL is trial and error learning.

An learns by with an
to maximize

SuperScale RL: A Proven Recipe to Superintelligence

MuZero Stratego lAIphaDev AlphaTensor Fusion

The Zero Series

AlihéYSTEMSFO

AlphaGo AlphaGoZero

% | ADIGITAL

" PRODIGY

AIphaZero

MuZero

AlphaTensor

26

The Zero Philosophy

If an agent can learn to master an environment ,
then you demonstrably have a system that is

It also means that this algorithm is and should apply
to other domains.

This is particularly important to

27

AlphaGoZero & AlphaZero

Learned simply by playing games against itself,

starting from completely random play.

human patterns, accumulating

thousands of years of human knowledge in a

matter of days.

Ultimately discarded some in preference of
that humans don't even know

about.

3-3 invasion
7,
506-02 (12)
00e-02 | sEg. @ OPD
L e (8) (2)
sooce i) 0> 00,
1 S 000
> e-02 J 2
2 q .
S 150602 . as
g
= 1 00e-02 . %
o .
| A] .
0000000 o
} »
oo - e
r
0 10 20

D000
(] OO > &)
DO 2

.0
5 o)
¥
e
20 30 40 50 60

HHHHH

19%

T o b 0:00 200 400 600 8:00
, b 4/45/1 2.d4 d5 e5 &5 D3 e6 Le2 a6

DO06: Queens Gambit

19%
- A/’\/\M
%

o% +

0:00 2:00 4:.00 6:00 8:00
w 16/34/0, b 1/47/2 2...c6 Dc3 D6 D3 a6 g3 c4 ad

28

AlphaTensor

Size Best method Best rank AlphaTensor rank
(n, m, p) known known Modular Standard
Not Only board gameS! ©@,2,2) (Strassen, 1969)2 7 7 7
3,3,3) (Laderman, 1976)'5 23 23 23
(Strassen, 1969)2
@,4,4) 49 47 49
2,2,2)® @2,2,2)
AIphaTensor ’ (.5.5) (3,5,5) + (2,5,5) 98 9% 98
eﬁ;lClent, and provably correct 2,23 222 +(@21) 11 11 11
. @,2,4) @,2,2) +(2,2,2) 14 14 14
algorithms for fundamental tasks san podrpog @ a8 g 48
. o 1o . (2,3,3) (Hopcroft and Kerr, 1971)'6 15 15 15
such as matrix multiplication. T

(2,8,5) (Hopcroft and Kerr, 1971)16 25 25 25
(2,4,4) (Hopcroft and Kerr, 1971)'8 26 26 26

. M 2,4,5) (Hopcroft and Kerr, 1971)16 33 33 33
BOI’\US. Can gngle huge aCtlon 22,5,5; (Hopcroft and Kerr, 1971)'® 40 40 40
(3,3,4) (Smirnov, 2013)18 29 29 29
SpaCeS 0(1 O) 3,3,5) (Smimov, 2013)'8 36 36 36
3,4,4) (Smirnov, 2013)18 38 38 38
3,4,5) (Smirnov, 2013)18 48 47 47
(3,5, 5) (Sedoglavic and Smirnov, 2021)'958 58 58
4,4,5) 4,4,2) + (4,4,3) 64 63 63

4,5,5) (2,5,5)®(2,1,1) 80 76 76

What made those systems Superhuman?

Scaled up trial and error
Grounded feedback signal
Search

Curriculum

What made those systems Superhuman?

4 Scaled up trial and error ‘ —

IS

RATEAR ADIGTAL
SEESNE] ¢ PRODIGY
i ey |l SR

Grounded feedback signal
Search

Curriculum

31

What made those systems Superhuman?

4 Scaled up trial and error

4 Grounded feedback signal ‘ _ V/N

Search

Curriculum

What made those systems Superhuman?

4 Scaled up trial and error
Grounded feedback signal

Search

Curriculum

33

What made those systems Superhuman?

4 Scaled up trial and error
Grounded feedback signal
(4 Search

127Curriculum

34

AlphaZero is the agent. Lean is the environment.

| VN

AlphaZero for
Mathematics

When RL meets Formal
Maths

g % oo

)
X PROI]IGV
Aol
Pt
RN

AlphaProof: Master Plan

1. Lean gives us a way to scale up trial and error with
a. An environment to explore mathematics completely in silico
b. A perfect feedback signal for proving

2. We can therefore reach superhuman intelligence and discover new
truths, just like in Go/chess/Tensor decomposition... provided:
e We can generate high enough quality + quantity problems
e RL works

36

AlphaProof: Master Plan

1. Lean gives us a way to scale up trial and error with
a. An environment to explore mathematics completely in silico
b. A perfect feedback signal for proving

2. We can therefore reach superhuman intelligence and discover new
truths, just like in Go/chess/Tensor decomposition... provided:
I?7 We can generate high enough quality + quantity problems
RL works

37

Where do the problems come from?

Humans define the problems

- We want to help human
mathematics

- There are already a lot of
problems!

Where do the problems come from?

Humans define the problems AlphaProof defines the problems

- We want to help human - Around human mathematics
mathematics - Auto-formalisation
- There are already a lot of - Test-time RL

problems! - Augment human mathematics

Let's take a step back...

Informal Formal
mathematics mathematics
Large amount of data Small amount of data
P>

Not verifiable Verifiable

AlphaProof: Foundational Bet

Perfect verification will in the long run be the most important property
for mathematics.

Informal Formal
mathematics mathematics

Large amount of data Small amount of data

Not verifiable Verifiable

RL meets Formal Math

- We have a to build agent that can discover

knowledge by themselves and reach superhuman intelligence in
certain domains

- Key ingredients are and

- provides us with those key ingredients

42

What's the IMO

The world-championship level event in
mathematics that brings together the

best young minds from around the
world.

International Mathematics Olympiad

44

USA team selection

~17,000,000

High school students

USA team selection

~60,000
AMC10 & AMC12

~17,000,000

High school students

USA team selection

~3,000
AIME

~60,000
AMC10 & AMC12

~17,000,000

High school students

USA team selection

~3,000
AIME
MATH
benchmark
~60,000
AMC10 & AMC12

~17,000,000

High school students

USA team selection

~250
USAMO

~3,000

AIME

~60,000
AMC10 & AMC12

~17,000,000

High school students

20
USA IMO camp

~250
USAMO

~3,000

AIME

~60,000
AMC10 & AMC12

~17,000,000

High school students

6

IMO

20

USA IMO camp

~250
USAMO

~3,000

AIME

~60,000
AMC10 & AMC12

~17,000,000

High school students

The IMO Problems

These are hard problems!

(Easy, Medium, Hard)

Test of reasoning, not knowledge
Take hours even for specialists
Not leaked

Half of the participants, solve 2 or
less problems.

Carnegie Mellon Math Professor - IMO Foundation VP for A...

a Po-Shen Loh - 3rd+ + Follow -
>
4 mo - ®

| tried this year's problems while at the International #Math Olympiad myself.
Took me hours.

Context about IMO: problems are specifically selected to be non-standard. For
the previous 10 years, | served as the national coach for USA
(https://Inkd.in/ggXvNQHY). During IMO itself, national coaches meet to pick
the problems to appear on the exam. One of most important tasks of that group
is: avoid problems similar to problems that appeared anywhere before. National
coaches would dig up an old obscure math contest with a similar problem, and
show it to the group, after which the proposed problem would be struck down.

52

IMO2024

65TH INTERNATIONAL
MATHEMATICAL OLYMPIAD

16-17TH JULY 2024

Our IMO Participation - Apollo program

Can we reach the moon?

Can our system solve the 2024 IMO problems
at all, given

- the compute available to us.

- and enough time.

54

January 2024

We are 7 months away, we need to make a decision about Geometry:
- Mathlib is very sparse in 2D euclidean geometry
- Should we fill it ourselves?

January 2024

We are 7 months away, we need to make a decision about Geometry:
- Mathlib is very sparse in 2D euclidean geometry
- Should we fill it ourselves?

Miraculously, another group within Google DeepMind has been working
on IMO Geometry problem and the system is already very strong!

We decide to join forces for July:
- AlphaGeometry will tackle geometry
- AlphaProof will tackle algebra, number theory, combinatorics

https://deepmind.google/discover/blog/alphageometry-an-olympiad-level-ai-system-for-geometry/

March 2024

We have been training AlphaProof on proving theorems but not all
questions are of the form "Prove that". Some require an answer to be
determined, e.g. “Find all X such that ...”

We debate what we should do:
Easy mode: Correct answer is given by an oracle; Al proves it is correct
Hard mode: Al determines the answer and proves it is correct

March 2024

We have been training AlphaProof on proving theorems but not all
questions are of the form "Prove that". Some require an answer to be
determined, e.g. “Find all X such that ...”

We debate what we should do:
Easy mode: Correct answer is given by an oracle; Al proves it is correct
Hard mode: Al determines the answer and proves it is correct

AlphaProof will operate in hard mode:
- Generates candidate answers using Gemini
- Attempts to prove/disprove all candidates

Formalised Problems in Input

We have a final debate around if the system should receive as input
- The natural language description of the problem or
- A manually formalised description of the problem

Formalised Problems in Input

We have a final debate around if the system should receive as input
- The natural language description of the problem or
- A manually formalised description of the problem

After concertation with our judges, we decided to give the formalised
problems as input to the system.
- The ability we cared about was mathematical reasoning and problem
solving.
- We asked our lean experts to manually formalise the problems for
the system.

Our Protocol

After officially receiving the problems at 1PM,

Lean experts manually formalize problems
Generate O(100) answer candidates with Gemini
Filter the easily disprovable ones

Run test-time RL

B~ 0N -

16th July, Day 1, Tuesday

1PM

P1*: Algebra

P2*: Number Theory
P3: Combinatorics

* require an answer to be determined

Problem 1. Determine all real numbers a such that, for every positive integer n, the integer
la] + [2a] + -+ + [ne|

is a multiple of n. (Note that |z] denotes the greatest integer less than or equal to z. For example,
|—7] =—4 and [2| = [2.9] =2.)

Problem 2. Determine all pairs (a,b) of positive integers for which there exist positive integers g
and N such that

ged(a™+b, 0" +a)=g
holds for all integers n > N. (Note that ged(z,y) denotes the greatest common divisor of integers
and y.)

Problem 3. Let ay,as,as,... be an infinite sequence of positive integers, and let N be a positive
integer. Suppose that, for each n > N, a, is equal to the number of times a,_; appears in the list
a1,02, - -+, Qn_1-

Prove that at least one of the sequences a1, as, as, ... and as, a4, ag, . . . is eventually periodic.

(An infinite sequence by, b, b3, .. . is eventually periodic if there exist positive integers p and M such
that by, = by, for all m > M.)

16th July, Day 1, Tuesday

1PM
P1*: Algebra - Disproves 99% of guesses
P2*: Number Theory - Disproves 98% of guesses

P3: Combinatorics

* require an answer to be determined

17th July, Day 2, Wednesday

1PM

P4. Geometry
P5*. Combinatorics
P6*: Algebra

* require an answer to be determined

Problem 4. Let ABC be a triangle with AB < AC < BC'. Let the incentre and incircle of triangle
ABC be I and w, respectively. Let X be the point on line BC different from C' such that the line
through X parallel to AC' is tangent to w. Similarly, let Y be the point on line BC' different from
B such that the line through Y parallel to AB is tangent to w. Let AI intersect the circumcircle of
triangle ABC' again at P # A. Let K and L be the midpoints of AC' and AB, respectively.

Prove that ZKIL+ ZYPX = 180°.

Problem 5. Turbo the snail plays a game on a board with 2024 rows and 2023 columns. There
are hidden monsters in 2022 of the cells. Initially, Turbo does not know where any of the monsters
are, but he knows that there is exactly one monster in each row except the first row and the last
row, and that each column contains at most one monster.

Turbo makes a series of attempts to go from the first row to the last row. On each attempt, he chooses
to start on any cell in the first row, then repeatedly moves to an adjacent cell sharing a common
side. (He is allowed to return to a previously visited cell.) If he reaches a cell with a monster, his
attempt ends and he is transported back to the first row to start a new attempt. The monsters do
not move, and Turbo remembers whether or not each cell he has visited contains a monster. If he
reaches any cell in the last row, his attempt ends and the game is over.

Determine the minimum value of n for which Turbo has a strategy that guarantees reaching the last
row on the n'* attempt or earlier, regardless of the locations of the monsters.

Problem 6. Let Q be the set of rational numbers. A function f: Q — Q is called aquaesulian if
the following property holds: for every z,y € Q,

f+f@)=Ffz)+y o f(f(z)+y) =2+ f(y).

Show that there exists an integer ¢ such that for any aquaesulian function f there are at most
c different rational numbers of the form f(r) + f(—r) for some rational number r, and find the
smallest possible value of c.

17th July, Day 2, Wednesday

1PM

P4. Geometry - Solved in secs by AlphaGeometry
P5*: Combinatorics - Failed to formalise on the day

P6*: Algebra - Disproves 7% of guesses

* require an answer to be determined

18th July, Day 3, Thursday

We had a way to track progress and we observe:

- P1: AlphaProof solved half of the problem 3/7 points
- P2: AlphaProof arguably solved the whole problem 6/7 points
- P3: AlphaProof makes no progress

Day1: 9/21 points

18th July, Day 3, Thursday

We had a way to track progress and we observe:

- P1: AlphaProof solved half of the problem 3/7 points
- P2: AlphaProof arguably solved the whole problem 6/7 points
- P3: AlphaProof makes no progress

- P4: AlphaGeometry solved in seconds 7/7 points

- P5: AlphaProof makes no progress
- Pé: AlphaProof proves a case 2/7 points

Day1: 9/21 points, Day2: 9/21 points, Total 18/42 points

19th July, Day 4, Friday

e mehtarishi+alphaproof-agent@google.com
@
| have discovered a truly marvelous proof of imo_2024_p6.parts.ii.only_1588200855951509015 that this email is too short to contain.

19th July, Day 4, Friday

mehtarishi+alphaproof-agent@google.com

| have discovered a truly marvelous proof of imo_2024_p6.parts.ii.only_1588200855951509015 that this email is too short to contain.
Jk, here it is:

theorem imo_2024_p6.parts.ii.only_1588 1509015 (IsAq lian : (Q - Q) - Prop) (IsAquaesulian_def : V f, IsAquaesulian f &« V xy, f (x + f
y) =fx+yvf(fx+y) =x+fy): Isteast {(c : Z) | ¥V f, IsAquaesulian f = {(f r + f (-r)) | (r : Q) }.Finite A {(f r + f (-r)) | (r :
Q)}.ncard s c} 2 := by
exists@?_
+ useAu b=>if j:u @=0then by_contra Ac=>7_ else 7_
- suffices: ({J|3k,u k+u (-k)= J}) <{0}
+ simp_all[this.antisymm]
rintro - (a, rfl)
contrapose! ¢
simp_all
suffices:{U|3examples6, (u) <«Q@> +u (-<_>)= U} {0, (u (a : Rat)+ (u<|@@t(((-a))))) } ..
+ use (Set.toFinite (_)).subset t@@this , (Set.ncard_le_ncard$ (((this)))).trans (Set.ncard_pair$ Ne.symm (+ ((c)))).le
rintro-(hz, rfl)
induction b @hz a
- have:=b (-a)$ hz+u a
have:=b hz hz
simp_all[add_comm]
have:=b (-hz) (hz+u t(hz))
simp_all[add_assoc, (]
induction this
+ simp_all
have:=b hz (hz+(u a+u (-a)))
have:=b (hz+(u a+u (-a)))$ hz+(u a+u (-a))
use .inr$ by_contra$ by hint
have:=b hz$ hz+(u hz+u (-hz))
cases b (hz+(u hz+u (-hz)))$ hz+(u hz+u (-hz))with|_=>hint
(-hz) (u hz+a)
$ -a
specialize this (u hz+a)
simp_all[~add_assoc]

specialize b a a

simp_all[add_comm]

have:=(this<| -a) (ra + (((ua))): (r_ :((C_))))) ..
simp_all[add_assoc]

19th July, Day 4, Friday

e mehtarishi+alphaproof-agent@google.com
<«
| have discovered a truly marvelous proof of imo_2024 p6.parts.ii.only_1588200855951509015 that this email is too short to contain.

Thomas Hubert <tkhubert@google.com>
to Demis, Sergey

19th July, Day 4, Friday

3 mehtarishi+alphaproof-agent@google.com
@
| have discovered a truly marvelous proof of imo_2024_p6.parts.ii.only _1588200855951509015 that this email is too short to contain.
Jk, here it is:

theorem imo_2024_p6.parts.ii.only_1588200855951509015 (IsAquaesulian : (Q - Q) - Prop) (IsAquaesulian_def : V f, IsAquaesulian f o ¥ x y, f (x + f
y) =fx+yvf(fx+y) =x+fy): IsLeast {(c : Z) | V f, IsAquaesulian f » {(f r + f (-r)) | (r : Q}.Finite A {(f r + f (-r)) | (r :
Q)}.ncard = c} 2 := by

mehtarishi+alphaproof-agent@google.com

o

| have discovered a truly marvelous proof of imo_2024_p2_7949354807137552108 that this email is too short to contain.
Jk, here it is:

theorem imo_2024_p2_7949354807137552108 : {(a, b) | @<aAn®@<bA3IgN 0<gArA@<NAYnN=N, Nat.gcd (a * n+b) (b~ n + a) =g} = {(a, b)
| Nat.gcd a b =1 A a = b} := by
use subset antisvmm (At S=>S.2.2.rec Aw 0=>?) ?

19th July, Day 4, Friday

e mehtarishi+alphaproof-agent@google.com

@

| have discovered a truly marvelous proof of imo_2024_p6.parts.ii.only_1588200855951509015 that this email is too short to contain.

Jk, here it is:

theorem imo_2024_p6.parts.ii.only_1588200855951509015 (IsAquaesulian : (Q - Q) - Prop) (IsAquaesulian_def : V¥ f, IsAquaesulian f « ¥ xy, f (x + f
y) =fx+yvf(fx+y)=x+fy): IsLeast {(c : Z) | V f, IsAquaesulian f = {(f r + f (-r)) | (r : Q) }.Finite A {(f r + f (-r)) | (r :
Q)}.ncard = c} 2 := by

mehtarishi+alphaproof-agent@google.com

o

| have discovered a truly marvelous proof of imo_2024_p2_7949354807137552108 that this email is too short to contain.
Jk, here it is:

theorem imo_2024_p2_7949354807137552108 : {(a, b) | @<aA@®@<bA3IgN, 0<gA@<NAYN=N, Nat.ged (a “n+b) (b~ n+a)=g}={(a, b)
| Nat.gcd a b = 1 A a = b} := by
use subset antisvmm (At S=>S.2.2.rec Aw 0=>?) ?

mehtarishi+alphaproof-agent@google.com

o

| have discovered a truly marvelous proof of imo_2024_p1_1897952008761024785 that this email is too short to contain.
Jk, here it is:

theorem imo_2024_p1_1897952008761024785 : {(a : R) | ¥ (n : N), @ <n > (n : Z) | (3 i in Finset.Icc 1 n, |i * a]J)} = {2 * k | k € Set.range
(Int.cast : Z - R)} := by

Final Results

P1, P2, P6 fully solved by AlphaProof
P4 fully solved by AlphaGeometry

We keep running over the weekend in
the hope of getting one point on P3.
The agent made some progress but
not enough for a partial point.

Final Results

P1, P2, P6 fully solved by AlphaProof
P4 fully solved by AlphaGeometry

We reached the score of a
medallist and missed the
threshold by one point (with more
time and more compute!).

Score on IMO 2024 problems

42 TOTAL
40

30

20 Bronze

Points total

Human participant rank

P6

P6 was arguably one of the hardest problems in
the last 10 years at the IMO. Only 5/ 609 solved
the problem fully.

"I spent a couple of hours on this problem
and did not solve it. [...] | find the fact that the
program can come up with a somewhat
complicated construction like this very
Impressive"

Prof Sir Timothy Gowers, Fields medalist and IMO
gold medalist

500- Problem 6

400-

300+

200+

100+
01234567

Challenges

Gaps in Mathlib:
- Geometry, even P1

Combinatorics problems were difficult:
- P5 was extremely hard to formalise
- Did not make progress on P3 & P5.

Used many orders of magnitude more compute than human

contestants:
- Successfully landed on the moon
- And will want to be more efficient for the next trip!

AlphaZero is the agent. Lean is the environment.

| VN

AlphaProof

Methods

Formaliser Model

a problem/theorem
described in natural
language

IMO 2021 Shortlist, Problem A5

Let n> 2 be an integer and let @), a5, . . . , a, be positive real numbers such that
a; +a> + ..+ a, = 1. Prove that

n

ay 1
Z p (a1+a2+--~+ak_1)2<—.
k=11—ak 3

Formalizer network

%

theorem imo_shortlist_2021_a5
(n:N) (hn:2=<n)(a:N>R)
(hapos : ¥ i, 0 < a i)
(hasum : ¥ i in Finset.Icc 1 n, a i =1) :
Y k in Finset.Icc 1 n, a k / (1 - a k) *
(£ i in Finset.Icc 1 (k-1), ai) *2<1 /3

Output: a Lean
formalisation

78

Prover Model

Input a lean state Sample N tactics

state tactic

> let p := minFac (n ! + 1)
n: N
3 p, n <p A Prime p

by contradiction

Prover
Model

Prover Model + AlphaZero Search

Search over actions = Lean tactic

TS
w e
g 2

, n < p A Prime p

I

s

CompUte neW after every let p := minFac (n ! + 1) by contradiction,

action / tactic application / \

- := (n ! + 1) .minFac /\ /\
, n < p A Prime p

Exploit high prior and high value paths ‘ \/\l/\/\

Explore low visited paths T [I]
| 8
[-

g 22

TO B

80

Step 1: Auto formalisation

1: Train a formalisation model and auto-formalise human created problems

® Human Problem

Auto-Formalised version of
the Problem

81

Step 1: Auto formalisation

1: Train a statement formalisation model and auto-formalise human created
problems

Informal Formal
Problems Y formalise Problems

O(1M) Formaliser O(100M) Prover
Model Model

82

Step 2: Build on top of Mathlib

2: Train the prover model supervised on Mathlib

- 100k definitions
- 200k theorems
- 300k lines of proofs

Learn a good prior of actions to take.

State part of a human
written proof

state

Train towards human Tactic

tactic

P := minFac (n ! + 1)

Step 3: AlphaZero Reinforcement Learning

3: Train the prover model by RL

For each formal problem
- Generate experience of (dis)proving by searching over Lean steps.
- Use Lean to verify proofs
- Reinforce the prover network with each success

I Informal ! A llll Formal :%;;.
Problems formalisel| Problems A

o(im) Formaliser O(100Mm) Prover
Model Model

84

Final Step: Test-Time RL

4: Train the prover model on specific problems by RL

For each problem:
- Generate variants of the problem
- Run RL exactly as previous step

variant
generation

|_ Formal IMO :
Problems -

| E——
X, lI Formal
searc

85

Final Step: Test-Time RL

® Very hard problem

Generalist
Checkpoint

Test-Time RL

°
Interesting variants
of the "Very hard
problem”
°
Bubble of problems
the agent can solve
easily
— sl
°
°
°
Generalist

Checkpoint

Test-Time RL

°
°
Interesting variants
of the "Very hard
problem" 8
°
Bubble of problems
the agent can solve
easily o
— A, .
°
. ° °
°
°
Specialist .

Checkpoint °

Test-Time RL

°
Interesting variants
of the "Very hard
problem”
°
Bubble of problems
the agent can solve
easily
— . 4 .
)
°
°
Specialist

Checkpoint

Test-Time RL

°
Interesting variants
of the "Very hard
problem”
°
Bubble of problems
the agent can solve
easily
® o
°
°
°
Specialist

Checkpoint

Test-Time RL

°
Interesting variants
of the "Very hard
problem”
°
Bubble of problems
the agent can solve
easily
® o
°
°
°
Specialist

Checkpoint

Challenges for AlphaProof

Inherited challenges from Formal Mathematics
- Most of human data in natural language
- Cannot easily learn and work on areas not supported by Mathlib.

Generally,
- Creative building of new objects and theories, interestingness
and beauty in mathematics

92

Warm up: back to the infinitude of primes

AIME 2020 i p10

Problem

Find the sum of all positive integers n such that when 1° + 23 + 3 + - - - + n? is divided by n + 5, the
remainder is 17.

Solution 1

The formula for the sum of cubes, also known as Nicomachus's Theorem, is as follows:

k(k+1)\>
PB4+ 434+ =1 +243+-+k)?%= (%)
for any positive integer k.
So let's apply this to this problem.
Let m = n + 5. Then we have
PB+22+3+...4+(m—-5)>=17 mod m

<W) =17 mod m

m(m —9) +20\°
(=)
(m(m —9)+20)°=4-17 mod m
(20)° =68 mod m
332=0 modm
So, € {83,166, 332}. Testing the cases, only 332 fails. This leaves 78 + 161 = [239 |

=17 mod m

Warm up: back to the infinitude of primes

Demo: Link between the Riemann Zeta and the primes

zetamath

@zetamath - 23.3K subscribers - 5 videos

More about this channel ...more

0O

Home Videos Playlists Q

/C £(2)dz o
\

zetama €3

Analytlc |

Contmuatlon

n=1

Complex Integration and Finding Zeros of i Analytic Continuation and the Zeta Function : The Basel Problem Part 2: Euler's Proofand : The Basel Problem Part 1: Euler-Maclaurin
the Zeta Function 223K views - 3 years ago the Riemann Hypothesis Approximation
209K views - 2 years ago 96K views + 3 years ago 113K views - 4 years ago

Factorials, prime numbers, and the Riemann
Hypothesis

162K views - 4 years ago

Link between the Riemann Zeta

iz_ PR B S
n o 2 3
n=1
1+ : +1+
§) 7 8
1 1 1
-

1 1 1 1

(1+1+ 1 1 +)
2 922 93

. (1+1+ L 1 +)
3 32 33

111
l+-+=+=+...

5 52 5

The Riemann zeta function

m=1 .

C(S)—ils—lg[(l I ;S : p128 :)

Let's prove the finite case

L
222 93

11 1
14+ 5+ =+

3 32 33
1+1+1-%1+
5 52 53 7

Final Link with the root of the zeta function

Final Link with the root of the zeta function

Final Link with the root of the zeta function

Zlog =z — log(2m) — Z —

pk<zx C(a)=0

What's Next for AlphaProof?

Broaden to the entire Mathematical landscape
Contribute to the Frontiers of Research Math

AlphaProof as a useful tool for every thinker

Individually, this was ,_ .
almost impossible }im ﬂ

Together, it felt
impossible to fail

Thank you for
Listening

Questions?

