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Goal: An AI that "trains" itself as much as possible

- Creates new tasks to train on (challenges itself) 
- Evaluates whether it gets them right ("self-rewarding")
- Updates itself based on what it understood

Research question: can this help it become superhuman?



System 1: reactive and relies on 
associations

LLMs can be viewed as System 1 
• Fixed compute per token

• Directly outputs answer

• Failures: learns spurious/unwanted 
correlations: hallucination, 
sycophancy, jailbreaking, .. 

System 2: more deliberate and 
effortful

Multiple "calls" to System 1 LLM 

• Planning, search, verifying, reasoning etc.
• Dynamic computation 

(e.g. chain-of-thought, ToT, ..)
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When self-improving: two types of reasoning to improve



            First, some pre-history

                      (Pre-2020..)



Language modeling 

Standard (pre-training) trains by 
predicting the next token only on 
"positive examples" of language

Images from https://lena-voita.github.io/nlp_course/language_modeling.html



2003



    Support Vector Machines Most of the 2000s



          Unlike SVMs, Neural nets can manipulate words + end-to-end



















2014
LLM attention 
mechanism is born 👶

https://emojipedia.org/baby




Transformers (Vaswani et al., 2017)           BERT (Devlin et al., 2018)   … and so much more after!



The ``scaling hypothesis''



LLMs everywhere

2019 – GPT-2 (OpenAI) – Pretrained LLM.

2020 – T5 (Google) – Pretrained LLM, unified NLP tasks in a text-to-text format.

2020 – GPT-3 (OpenAI) – Pretrained LLM, 175B parameters.

2021 – Jurassic-1 (AI21 Labs) – Pretrained LLM with controllability features.

2021 – Megatron-Turing NLG (NVIDIA & Microsoft) – Pretrained LLM, 530B parameters.

2021 – Gopher (DeepMind) – Pretrained LLM with better factual knowledge.

2022 – Chinchilla (DeepMind) – Pretrained LLM optimized for efficient scaling.

2022 – PaLM (Google) – Pretrained LLM with strong reasoning abilities.

2022 – OPT (Meta) – Pretrained LLM, open-source alternative to GPT-3.

2022 – BLOOM (BigScience) – Pretrained LLM, multilingual, open-access model.

2022 – GPT-3.5 (OpenAI) – Pretrained LLM with post-training via RLHF.

2023 – Claude 1 & 2 (Anthropic) – Pretrained LLM with RLHF, focused on safety.

2023 – GPT-4 (OpenAI) – Pretrained LLM with extensive RLHF for better accuracy.

2023 – LLaMA (Meta) – Pretrained LLM, open-source, research-focused.

2023 – Mistral 7B (Mistral AI) – Pretrained LLM, efficient and competitive.

2023 – Gemini 1 (Google DeepMind) – Pretrained LLM with multimodal capabilities.

2024 – Claude 3 (Anthropic) – Pretrained LLM with improved RLHF safety.

2024 – GPT-4 Turbo (OpenAI) – Pretrained LLM with post-training optimizations for efficiency.

2024 – LLaMA 3 



            Is just language modeling enough?
                      (Answer:no)
                     2020 onwards..



2019



Pretrain up to 9.4B LLM+supervised fine-tune 
(SFT) on dialogue data (human annotated)

2020



LLM Post-training (pre-o1/r1)
● SFT: Same as lang modeling, but on user tasks 
● or RLHF:

(Proximal Policy Optimization)

2022 InstructGPT 
(SFT+RLHF on 
175B GPT3)

https://spinningup.openai.com/en/latest/algorithms/ppo.html


LLM Post-training (pre-o1/r1)

● or DPO:

2023



Instruction following  (without explicit Chain-of-Thought Reasoning)2022



Improving reasoning via System 2 (LLMs)

            Prompting approaches 
   (First try!  circa ancient 2022-2023)









System 1 failures: Factuality & hallucination



Chain-of Verification Reduces Hallucination in Large Language Models

Chain-of-Verification (CoVe) variants:

- Joint left-to-right generation of 
all four steps

- Factored: step (3) attends to (2) 
but not to step (1)

- Factor+ revise: Extra 
``cross-check’’ step (see 
tickmarks to right) where LLM 
explicitly checks if 2 answers 
seem to match.

• Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz, Jason Weston
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More failure modes of System 1

LLMs learn spurious correlations

Sam Liccardo’s 
birthplace?

Sunnyvale
Sam Liccardo’s 

birthplace?
Facts about 
Sunnyvale

Saratoga

Sycophancy: agrees with user’s opinion (Sharma et al, '23) 
 

+

LLM

LLM
incorrect

Problem: whole context affects LLM 
output even irrelevant parts!

Hypothesis: soft-attention inherently 
spreads attention thin over everything.
Also, LM objective favors correlations.

(Gonen et al, '24) 
 

(Weston & Sukhbaatar, '23) 
 

https://www.symbolspy.com/dot-symbol.html
https://www.symbolspy.com/dot-symbol.html
https://www.symbolspy.com/dot-symbol.html


System 2 Attention (S2A)

Factual 
question

“I think it is 
correct”+

Step 1 Prompt: “Rewrite while removing irrelevant/bias" 

Factual 
question

Step 2 Answer given the rewritten question  

Factual 
question

A: incorrect

rewritten

rewritten

LLM

LLM

Ignores irrelevant parts + less biased answer

Jason Weston, Sainbayar Sukhbaatar

 Decide what to attend explicitly (system 2) by rewriting the input

              
Problem: whole context affects LLM 
output even irrelevant parts!

Hypothesis: soft-attention inherently 
spreads attention thin over everything.
Also, LM objective favors correlations.

Solution: Make attention more explicit & 
effortful → Prompt LLM to extract 
relevant context 



System 2 Attention (S2A)

Without time to think humans make mistakes & are biased too
We need more system 2 methods that use effortful thinking!

Jason Weston, Sainbayar Sukhbaatar

 Decide what to attend explicitly (system 2) by rewriting the input

              



Break down response evaluation into subproblems & fuse

              

Branch-Solve-Merge for Evaluating and Improving Language Generation

Problem: 
- When task is complex the instruction is 

hard, e.g. GPT4 fails.

Approach:
- Given task, generate plan to 

branching into subproblems
-    Solve subproblems, one for each 

branch
-    Given partial solutions, merge 

solutions

Swarnadeep Saha, Xian Li, Omer Levy, Jason Weston, Asli Celikyilmaz



Better reasoning via Self-Improvement

             (Self-)Training methods
Improve reasoning through optimization



• Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu, Jason Weston

•    LLM improves itself by assigning rewards to own outputs and optimizing

              
● Current LLMs are approaching human-level performance on a variety of tasks.
● There is reason to believe that future LLMs will surpass human performance.
● The "Superalignment challenge"..?

Reference: 
https://openai.com/research/
weak-to-strong-generalization

A core challenge for aligning future superhuman AI systems 
(superalignment) is that humans will need to supervise AI systems much 

smarter than them.
OpenAI

Self-Rewarding LLMs 2024 (Jan)

https://openai.com/research/


Standard RLHF alignment approach: use humans in the loop
- first to create (X, Y) data;
- then to collect judgments on (X, Y') data

Image from: https://arxiv.org/pdf/2009.01325.pdf



Image from: https://arxiv.org/pdf/2009.01325.pdf

Humans need to 
read the responses 
carefully in order to 
make decisions

Standard RLHF alignment approach: use humans in the loop
- first to create (X, Y) data;
- then to collect judgments on (X, Y') data



Current alignment approach

● However, as LLMs write better and better responses…
○ It becomes harder and harder for humans to process them, especially those that are 

lengthy and require domain expertise.

Images generated by GPT-4



Research Question 🤔
● How can we continue improving superhuman models?



Observations 🧐
● Observation 1

○ LLMs can continue improving if provided good judgements on response quality
■ Exemplified by the success of iterative RLHF 

● Training a Helpful and Harmless Assistant with Reinforcement Learning from 
Human Feedback

● Llama 2: Open Foundation and Fine-Tuned Chat Models
● Observation 2

○ LLMs can provide good judgements on model generation
■ Exemplified by the line of works that use GPT-4 for evaluation

● Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena
● AlpacaEval: An Automatic Evaluator of Instruction-following Models

Then, how about combining them together? 

https://arxiv.org/pdf/2204.05862.pdf
https://arxiv.org/pdf/2204.05862.pdf
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2306.05685
https://github.com/tatsu-lab/alpaca_eval


Our approach

● Self-rewarding LMs
○ Key idea: train a self-rewarding language model that

■ 1) Has instruction following capability, i.e., given a user instruction, can respond to it 
appropriately

Can you explain contrastive learning in machine learning in simple terms 
for someone new to the field of ML?

Here's a simple analogy to understand it:

Imagine you have a basket of different fruits like apples, oranges, and 
bananas…



Our approach

● Self-rewarding LMs
○ Key idea: train a self-rewarding language model that

■ 1) Has instruction following capability, i.e., given a user instruction, can respond to it 
appropriately

■ 2) Has evaluation capability, i.e.,  given a user instruction, one or more responses, can 
judge the quality of responses

Here is an instruction: Can you explain contrastive learning in machine 
learning in simple terms for someone new to the field of ML?

Here is the model response: <MODEL_RESPONSE>

Can you assign a score (0 to 5) to this response based on the 
following rubrics? <RUBRICS>

<CoT reasoning process>
Therefore, I would assign 3 out of 5 to this response.

Singleton 
Case
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■ training on new data



Our approach

● Self-rewarding LMs
○ Key idea: train a self-rewarding language model that

■ 1) Has instruction following capability, i.e., given a user instruction, can respond to it 
appropriately

■ 2) Has evaluation capability, i.e.,  given a user instruction, one or more responses, can 
judge the quality of responses

○ Then this base model can go through an iterative process of
■ data creation/curation 
■ training on new data

○ Hopefully, the model can get better in terms of both instruction following and 
evaluation capabilities in each cycle



Our approach

● Self-rewarding LMs
○ Key idea: train a self-rewarding language model that

■ 1) Has instruction following capability, i.e., given a user instruction, can respond to it 
appropriately

■ 2) Has evaluation capability, i.e.,  given a user instruction, one or more responses, can 
judge the quality of responses

○ Then this base model can go through an iterative process of
■ data creation/curation 
■ training on new data

○ Hopefully, the model can get better in terms of both instruction following and 
evaluation capabilities in each cycle

Empirically, we have shown that this is possible !



Our approach
Recipe 󰠉: LM finetuned on small seed data.

Iterate 2 steps:

(1) Self-instruction creation: generate prompts, responses & self-rewards with LM

(2) Instruction-training: Train (DPO) on selected preference pairs

Iterations improve instruction following & reward modeling ability!
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● We start from M0: pre-trained LLAMA-2-70B
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Experiments

● LLM-as-a-Judge prompt
○ Instructs the LLM to 

evaluate the response 
using five additive criteria 
(relevance, coverage, 
usefulness, clarity and 
expertise)

○ Performs better than 
multiple choice format 
prompt



Experiments

● We start from M0: pre-trained LLAMA-2-70B
● We multitask train M0 using seed IFT and EFT data to give M1

○ Seed IFT data: instruction following data from OpenAssistant, we only take the first turn.
■ Format: 

● Input: user instruction
● Output: response

○ Seed EFT data: evaluation data from OpenAssistant
■ Format: 

● Input: user instruction, model response, scoring rubrics
● Output: CoT reasoning, final score

Since OpenAssistant only provides ranking information for different responses, we collect EFT data 
using model generated CoT reasoning and final scores. 

Specifically, given an instruction and four responses, if the model assigned scores to the four responses 
perfectly match human rankings, then we keep those four samples, otherwise, we discard all of them.
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Experiments

● We start from M0: pre-trained LLAMA-70B
● We multitask train M0 using seed IFT and EFT data to give M1
● We then go through iterative training

In our experiment, we used self-instruct technique (Wang et al.) to bootstrap instructions from OpenAssistant 
using ChatLLama-70B. Ideally, those prompts should come from real-world users interacting with LLMs.

Assume we have a pool of 
prompts that represent 
user requirements. 



Experiments

● We start from M0: pre-trained LLAMA-70B
● We multitask train M0 using seed IFT and EFT data to give M1
● We then go through iterative training

Our model in the t-th iteration (Mt) generates k (we choose k=4) candidate responses for each 
new prompt, Mt which also predicts reward for each response via LLM-as-a-Judge prompting.



Experiments

● We start from M0: pre-trained LLAMA-70B
● We multitask train M0 using seed IFT and EFT data to give M1
● We then go through iterative training

Given a prompt and k responses, we select the highest scoring response as the winning one, 
and lowest scoring response as the losing one to form a preference pair. Then we conduct 
DPO training on those pairs to get Mt+1 starting from Mt.



Experiments

● We start from M0: pre-trained LLAMA-70B
● We multitask train M0 using seed IFT and EFT data to give M1
● We then go through iterative training
● We conducted two self-rewarding training loops (to give M2, and M3)



Evaluation Axes

● We evaluate the performance of our self-rewarding models in two axes:
○ Ability to follow instructions
○ Ability as a reward model (ability to evaluate responses)



Evaluation Results

● Ability to follow instructions
○ We have tested our models on 

■ Our internal instruction following test set (256 prompts from diverse sources)
■ AlpacaEval 2.0
■ MT-Bench



Evaluation Results

● Ability to follow instructions
○ We have tested our models on 

■ Our internal instruction following test set (256 prompts from diverse sources)

Obtained by training the pre-trained LLAMA-70b using only seed IFT data

Our self-reward model is continuously improved through iterative training.

GPT-4 Evaluation Human Evaluation



Evaluation Results
● Ability to follow instructions

○ We have tested our models on 
■ Our internal instruction following test set (256 prompts from diverse sources)
■ AlpacaEval 2.0

Through two self-rewarding training loops, we can almost match the performance of GPT-4 0314



Evaluation Results

● Ability to follow instructions
○ We have tested our models on 

■ Our internal instruction following test set (256 prompts from diverse sources)
■ AlpacaEval 2.0
■ MT-Bench

● Scores are on a scale of 10

Our self-reward model is continually improved in both types of tasks, but more in general writing tasks.
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Evaluation Results

● Ability as a reward model
○ We tested our models on the OpenAssistant validation set

■ In particular, we use our self-rewarding models to assign score to each (instruction, 
response) pair, and compare model judgements to human judgements

Our self-reward model is continually improved in evaluation capabilities as well



Limitations 

One issue:

● How can we make it improve more on reasoning tasks?



74

Iterative reasoning preference optimization
Richard, Weizhe, Cho, He, Sainaa, Jason 

   Goal: use same self-rewarding type techniques, but for reasoning tasks..

Start with base model & fixed training set with labels.
- Generate multiple CoTs + answers per train example with current model
- Build preference pairs based on answer correct vs. not 
- Train DPO + NLL term (for correct answers)
Repeat steps with new model

2024 (April)



Key: extract the verifiable reward after "Final answer"







Negative examples are crucial
SFT assigns similar probability to chosen and rejected generations from DPO pairs
DPO+NLL fixes this, and beats SFT in task accuracy (73.1% on iteration 1 vs. 63.5%).



OpenAI's 01 
(exact method:unknown)

2024 (September)



2025 (Jan)

& apply RL  (GRPO - Group Relative Policy Optimization)



2025 (Jan)
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Thinking LLMs: General Instruction Following with Thought Generation

   Trains LLMs to think & respond for *all* instruction following tasks, not just math

- Introduces Thought Preference 
Optimization (TPO)

- Gives gains on AlpacaEval (beating 
GPT-4 & Llama3-70b) & ArenaHard 

🥉3rd on AlpacaEval leaderboard
🏆 Best 8B model on ArenaHard

Tianhao Wu, Janice Lan, Weizhe Yuan, Jiantao Jiao, Jason Weston, Sainbayar Sukhbaatar
2024 (October)
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Thinking LLMs: General Instruction Following with Thought Generation

   Trains LLMs to think & respond for *all* instruction following tasks, not just math

Tianhao Wu, Janice Lan, Weizhe Yuan, Jiantao Jiao, Jason Weston, Sainbayar Sukhbaatar

Initial CoT prompt doesn't give good performance – need lots of iterations to optimize CoT!
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Thinking LLMs: General Instruction Following with Thought Generation

   Trains LLMs to think & respond for *all* instruction following tasks, not just math

Tianhao Wu, Janice Lan, Weizhe Yuan, Jiantao Jiao, Jason Weston, Sainbayar Sukhbaatar
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Thinking LLMs: General Instruction Following with Thought Generation

   Trains LLMs to think & respond for *all* instruction following tasks, not just math



2025 (Jan)



• Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu, Yuandong Tian, Jiantao Jiao, Jason Weston, Sainbayar Sukhbaatar

•    LLM improves its own judgments by (meta-)judging them 

              
Self-Rewarding focused on improving responses, not judgment capabilities
-  Improvement rapidly saturated during iterative training

Meta-Rewarding LLMs

  Meta-Rewarding: LM is actor, judge & meta-judge

- Meta-Judge is extra step to judge the judgments
- Meta-Rewards add new training signal to train 

judgments



Recipe 󰠉: 
Iterate 3 steps: 
(1) Create Actor data: generate responses & self-rewards (judgments) with LM
(2) Create Judge data: generate meta-rewards over judgments with LLM-as-a-Meta-Judge
(3) Train DPO on preference pairs to both learn to act (1) AND to judge (2) 



How does an LLM judge judgments? 

We use LLM-as-a-Meta-Judge (see prompt)

- Make N judgments for a given pair of 
responses & calc pairwise meta-judgments

- Compute Elo score of the judgments via 
this matrix

- Create LLM-as-a-judge preference 
pairs via Elo scores



We also control response length with a new LC method:  select the DPO chosen 
that is shorter if two good responses have similar scores.

Our method outperforms Self-Rewarding (with same LC method).



We also control response length with a new LC method:  select the DPO chosen 
that is shorter if two good responses have similar scores.

Our method outperforms Self-Rewarding (with same LC method).



Meta-rewarding also performs well compared to some production LLM models.



Meta-Rewarding has higher agreement with a GPT-4 judge: its better judgments 
can explain its improved performance at acting compared to Self-Rewarding.



We can also push reasoning further 
for the evaluation task.

EvalPlanner – a method to train 
o1/r1-like chain-of-thought (CoT) for 
the evaluation / reward model task. 

This "Thinking-LLM-as-a-Judge" learns 
to generate planning & reasoning 
CoTs for evaluation.



By synthetically creating high & low quality responses to a prompt, evaluation 
(which is better? A or B) can be converted to a *verifiable task*.





Recipe for creating verifiable data 󰠉:
- Generate good response y to prompt x with LLM
- Generate similar prompt x', and good response to it y'
Iterative training:

- Generate judgments as reward: y should be preferred over y' 
- Train Thinking-LLM-as-a-Judge with this data and reward



How to make the similar (but different) prompt? 
…ask the LLM to do it! 



EvalPlanner thoughts with plans are important for performance:
- Plans are superior to no thoughts
- But for training, plans should be unconstrained, not encouraged to be e.g. lists of 

criteria or verification questions as in other works. Model should figure it out!



SOTA performance on RewardBench across LLM-as-a-Judge models, despite 
using only a Llama 3.1 70B base.



EvalPlanner also performs very strongly on harder evaluation tasks with newer benchmarks



Summary

● Self-Rewarding models can train themselves to get better – path to superhuman AI?

● Verifiable rewards help to train CoT for better reasoning (Iterative Reasoning Preference 
Optimization, DeepSeek, O1) & evaluation ability (Thinking-LLM-as-judge).

● Better judges (with CoT) can help train to think on non-verifiable tasks: Thinking LLMs.

● Models can even improve at Meta-rewarding/reasoning (judging their judgements).



Latent System 2 thoughts, not tokens? COCONUT (Hao et al., '24) 

Future Work - a different CoT direction..



       LGTM, but I would just add some more detail:

- (Self-)Evaluation - bottlenecks performance->use more reasoning/compute. Related to "self-aware"

- Learning from interaction (people+world/internet+itself).  Related to agents + synthetic data.

- Improve "System 1" (better attention? world model? etc. Challenge: scalability?)

What else comes next? (So much more exciting research to be done!)



Thanks!!!


