& P

databricks Stanford |NLP

Compound
Al Systems & DS Py

Omar Khattab

Research Scientist, Databricks

Contributors 223 Incoming Assistant Professor, MIT EECS (Fall 2025)

000D

0 Includes slides adapted from
‘ ﬁ @ 2 @ Krista Opsahl-Ong & Michael Ryan

It’s never been easier to prototype
impressive Al demos.

When was Stanford University founded?

Parallelize this loop for me with 16 threads.

Stanford University was founded in 1891. It was nai
[code here]

California governor who donated the land and fund

located in Stanford, California, near Palo Alto. , , , ,
To parallelize this loop with 16 threads, you can use the concurrent.futures module in Python,

specifically the ThreadPoolExecutor class. Here is an example of how to do it:

D Copy code

from concurrent import ThreadPoolExecutor

import tqdm

Turning monolithic LMs into reliable Al
systems remains challenging.

When was Stanford University founded?

Parallelize this loop for me with 16 threads.

| Stanford University was founded in 1891.Jit was nar
California governor who donated the land and fund

[code here]

located in Stanford, California, near Palo Alto. , _ _ ,
To parallelize this loop with 16 threads, you can use the concurrent.futures module in Python,

specifically the ThreadPoolExecutor classjHere is an example of how to do it:

D Copy code

from concurrent import ThreadPoolExecutor

import tqdm

Air Canada must pay damages after chatbot lies
to grieving passenger about discount

Airline tried arguing virtual assistant was solely responsible for its own actions

Every Al system will make mistakes.

But the monolithic nature of LMs
makes them hard to control, debug,
and improve.

To tackle this, Al researchers increasingly
build Compound Al Systems,

i.e. modular programs that use LMs as
specialized components

Compound Al Systems, i.e. modular programs that use LMs as specialized components
Example: Retrieval-Augmented Generation

comvi:ztnds The stomach s
JEEEINEY Monetithie M protected by
digestive gastric acid and
sygstem? proteases.

Transparency: can debug traces & offer user-facing attribution

Efficiency: can use smaller LMs, offloading knowledge & control flow

Literature: DrQA (Chen et al., 2017), ORQA (Lee et al., 2019), RAG (Lewis et al., 2020), ColBERT-QA (Khattab et al., 2020)

Compound Al Systems, i.e. modular programs that use LMs as specialized components
Example: Retrieval-Augmented Generation

What -~ @) e The stomach is
compounds 1ot i} rotected b
protectthe = = protectec by

e Text gastric acid and

digestive = LM
Corpus proteases.
system?

Transparency: can debug traces & offer user-facing attribution

Efficiency: can use smaller LMs, offloading knowledge & control flow

Literature: DrQA (Chen et al., 2017), ORQA (Lee et al., 2019), RAG (Lewis et al., 2020), ColBERT-QA (Khattab et al., 2020)

Compound Al Systems, i.e. modular programs that use LMs as specialized components
Example: Multi-Hop Retrieval-Augmented Generation

=S
T
c
—

ir

(,Query FLIPR Two-Stage _ IE\
- Retriever Condenser Coridenisad Facts
' o l |

| Updated Query, Q,

s D T T
| Passages N

No,t<T
Task-Specific Reader = Prediction

Baleen T-Hop
Retriever

Control: can iteratively improve the system & ground it via tools

Literature: GoldEn (Qi et al., 2019), DecompRC (Min et al., 2019), MDR (Xiong et al., 2020), Baleen (Khattab et al., 2021)

Compound Al Systems, i.e. modular programs that use LMs as specialized components
Example: Com positional Report Generation, je. brainstorming an outline, collecting references, etc.

Table of contents

Background and Motivation
Question q © Understanding Contextual Embeddings

“The TOpiC t Late Interaction in Information Retrieval
ColBERT @ Survey

°
/\ @ Split Queries o Visual and Cognitive Inspiration
Wikipedia : o Influence of BERT
i » ! 0 earch & Sift
retrlever Writer Expert ® e & o Challenges and Innovations
|:> EE | 4 @ Synthesize |:> o Emergence of Alternative Approaches
— I @ Read & Ask : * ColBERT Architecture

@ Identify
Perspectives

Related Articles | I Answer a \ ° Overview
I I ‘\ o Late Interaction Mechanism
_________ ‘\ Add Trusted © Model Components and Training
Add Spedﬁc Perspective ‘ Gather Na Sources © Advancementsin ColBERTv2
@ Direct Generate A * Training ColBERT
Draft Outline Op Conversations {Cy, ..., Cy} Al o Initial Training

Refine o Retrieval and Ranking

E o Refinement with Naive Retrievers
| Outline O | o Iterative Training
—_— References R © Leveraging Cross-Encoders

© Fine-Tuning and Distillation

* Advancements in Retrieval Efficiency and Accuracy

o Efficiency in Late Interaction Retrieval

Quality: more reliable composition of better-scoped LM capabilities

STORM: Assisting in Writing Wikipedia-like Articles From Scratch with Large Language Models (Shao et al., 2024)

Compound Al Systems, i.e. modular programs that use LMs as specialized components

Pre-processing

Generate
! Rank
Possible Solutions
Solutions
. Generate
Problem Public Tests Additional Al —
Reflection Reasoning Tests

Input -
Problem
Description +
Public Tests

Code iterations

A4
Iterate on Iterate on Al :
Public Tests Tests i
Initial Code | : Final
Solution : Solution
A

..
Table singer, columns = [singer_ID, ...]
: Table concert, columns = [concert_ID, ...]:

Q: “What are the names of the singers
who are not French citizens?”

SQL generation

)

Select name from singer :
: Where Citizenship!= ‘French’ :

_ J

:{ Self-correction \

+ Task-agnostic prompting strategies, e.g. Best-of-N,

Chain Of Thought, Program of Thought, ReAct,

Reflexion, Archon, ...

Inference-time Scaling: systematically searching for better outputs

Literature: AlphaCodium (Ridnik, 2024), DIN-SQL (Pourreza & Rafiei, 2023), RARR (Gao et al., 2023), and many others

(Summary) Why Compound Al Systems?

1. Quality: more reliable composition of better-scoped LM capabilities
2. Control: can iteratively improve the system & ground it via tools

3. Transparency: can debug trajectories & offer user-facing attribution
4. Efficiency: can use smaller LMs, offloading knowledge & control flow

5. Inference-time Scaling: can systematically search for better outputs

Unfortunately, LMs are highly sensitive to how they’re
instructed to solve tasks, so under the hood we often...

J.5. Object Counting

note. L m not counting

vegetables_to_count = {
‘potatots 2,
'cauliflower': 1

} Blame 1 lines (1 loc) - [FeMMeEN:

pri

1 {"react_put_0": "You are in the middle of a room. Looking quickly

musy

[5111 mEp-am—
YElare' s 1,
'clarinet': 1,
13 vielin!: 1,

'o~cordioan ' - 4

Unfortunately, LMs are highly sensitive to how they’re
instructed to solve tasks, so under the hood we often...

Each “prompt” couples five very different roles:
1. The coreinput- output behavior, a Signature.
The computation specializing an inference-time strategy to the signature, a Predictor.

The computation formatting the signature’s inputs and parsing its typed outputs, an Adapter.

2
3
4. The computations defining objectives and constraints on behavior, Metrics and Assertions.
5

The strings that instruct (or weights that adapt) the LM for desired behavior, an Optimizer.

Existing Compound Al Systems are modular in principle, but are too “stringly-typed”:
they couple the fundamental system architecture with incidental choices
not portable to new LMs, objectives, or pipelines.

‘;
e 1y
" “~~rAarAdin T o

We know how to build controllable
systems & improve them modularly.

That is called... programming.

What if we could abstract Compound Al Systems

as programs with fuzzy natural-language-typed
modules that learn their behavior?

15

DSPy

Pre-processin Code iterations ,—W
e T LM program @ : X —), with X and) in natural language.
Problem *‘E In the course of its execution, ® makes calls to modules (M, ..., M),y). p—
irst series
_ . _ . bor 2014,
Each module M; : X; —)Y; is a declarative LM invocation, defined via o
hbetween.
inherently fuzzy natural-language descriptions of: (1) a sub-task D! (optional), Stk
N—— _ _ _ e
e (2) input domain type(s) D:, and (3) output co-domain type(s) D, . A

Q: “What are the names&
H who are not French citi

oetween
- premiered on 24 L, premiered on 1 L premiered on 1

October 2014

| February 2014 October 2014
on CBBC. on CBBC. on CBBC.
Input Passage X Output Passage)
J

'
) 4

fact_checking = dspy.ChainOfThought('claims —> verdicts: list[bool]')
fact_checking(claims=["Python was released in 1991.", "Python is a compiled language."])

Prediction(

reasoning="'The first claim states that "Python was released in 1991," which is true.
Python was indeed first released by Guido van Rossum in February 1991. The second claim s
tates that "Python is a compiled language." This is false; Python is primarily an interpr
eted language, although it can be compiled to bytecode, it is not considered a compiled 1
anguage in the traditional sense like C or Java.',

verdicts=[True, Falsel

)

For each module M;, determine the:

1. String prompt II; in which inputs &; are plugged in.
2. Weights ©; assigned to the LM.

in the optimization problem defined by:

1
arg max —— Z w(®eo n(x),m)
onm |X| i
(z,m)eX
given a small training set X = {(z1,m1),..., (x|, m|x)))}

and a metric ¢ : Y X M — R for labels or hints M.

This is hard. We don't have gradients or intermediate labels

to optimize each module! How should we go about this?

As an example, let’s say we wanted to build this simple
pipeline for multi-hop retrieval-augmented generation

00
def multihop_qga(question:str) —> str:

for 1 in range(2):

question

query = (context

context =

question
context

19

This can be expressed as the following DSPy program

class MultiHop(dspy.Module):
def __init__(self):

self.generate_query

dspy.ChainOfThought("context, question -> query")

self.generate_answer = dspy.ChainOfThought("context, question -> answer")

def forward(self, question):
context = []
for hop in range(2):
query = self.generate_query(context, question).query
context += dspy.Retrieve(k=3)(query).passages

answer = self.generate_answer(context, question)

return answer

20

Anatomy of an LM program in DSPy

class MultiHop(dspy.Module):
def __init__(self):

self.generate_query

dspy.ChainOfThought("context, question -> query")

self.generate_answer = dspy.ChainOfThought("context, question -> answer")

def forward(self, question):

context = []

Init method defines LM calls

for hop in range(2):
query = self.generate_query(context, question).query
context += dspy.Retrieve(k=3)(query).passages

answer = self.generate_answer(context, question)

return answer

21

Anatomy of an LM program in DSPy

class MultiHop(dspy.Module):
def __init__(self):
self.generate_query = dspy.ChainOfThought("context, questig

Forward method defines
program logic

self.generate_answer = dspy.ChainOfThought("context, question -> answer"

def forward(self, question): <‘\\
context = []
for hop in range(2):
query = self.generate_query(context, question).query
context += dspy.Retrieve(k=3)(query).passages

answer = self.generate_answer(context, question)

\return answer /

22

Anatomy of an LM program in DSPy

Signature: what to do,

1
class MultiHop(dspy.Module): not how to prompt!

def __init__(self):
self.generate_query = dspy.ChainOfThought("context, question -> query"}

self.generate_answer = dspy.ChainOfThought("context, question -> answer")

def forward(self, question):
context = []
for hop in range(2):
query = self.generate_query(context, question).query
context += dspy.Retrieve(k=3)(query).passages

answer = self.generate_answer(context, question)

return answer

23

Anatomy of an LM program in DSPy

Modules define the strategy
for expressing a signature

class MultiHop(ds
def __init__(self):
self.generate_query =| dspy.ChainOfThought{"context, question -> query")

self.generate_answer = dspy.ChainOfThought("context, question -> answer")

def forward(self, question):
context = []
for hop in range(2):
query = self.generate_query(context, question).query
context += dspy.Retrieve(k=3)(query).passages
answer = self.generate_answer(context, question)

return answer
24

Anatomy of an LM program in DSPy

class MultiHop(dspy.Module):
def __init__(self):

self.generate_query

dspy.ChainOfThought("context, question -> query")
—

self.generate_answer =| dspy.ChainOfThought("context, question -> answer")

def forward(self, question):

context = [] How can we translate these
for hop in range(2): into high-quality prompts?

query = self.generate_query(context, question).query

context += dspy.Retrieve(k=3)(query).passages

answer = self.generate_answer(context, question)

return answer

First, modules are translated into basic prompts
using Adapters and Predictors.

self.generate_query =| dspy.ChainOfThought("context, question -> query")

dspy.Adapter(self.generate_query) ‘ Predefined Adapters are used to
translate modules into basic prompts

Given the fields “context” and “question”, respond with the field “query”.

Follow the following format:

Context: <context>

Question: <question>

Reasoning: Let’s think step by step to <..>
Query: <query>

26

DSPy’s Optimizers can then tune this prompt!

... jointly along with all other prompts in your program

Given the fields “context” and “question”, respond with the field “query”.

Follow the following format:

Context: <context>

Question: <question>

Reasoning: Let’s think step by step to <..>
Query: <query>

Program Score: 37%

optimizer = MIPROv2()
optimized_program = optimizer.compile(program)

Carefully read the provided ‘context’ and "question . Your task is to formulate a concise
and relevant ‘query that could be used to retrieve information from a search engine to
answer the question most effectively. The "query should encapsulate...

Follow the following format:

Context: <context>

Question: <question>

Reasoning: Let’s think step by step to <..>

Query: <query>

Here are some examples: <...> Program Score: 55% 27

Instead of tweaking a string prompt...

Solve a question answering task with interleaving Thought, Action, Observation steps. Thought can reason about the current situation, and
Action can be three types:

(1) Search[entity], which searches the exact entity on Wikipedia and returns the first paragraph if it exists. If not, it will return some similar
entities to search.

(2) Lookup[keyword], which returns the next sentence containing keyword in the current passage.

(3) Finish[answer], which returns the answer and finishes the task.
Here are some examples. SCO res

i Question: What is the elevation range for the area that the eastern sector of the Colorado orogeny exteng

Thought 1: | need to search Colorado orogeny, find the area that the eastern sector of the Colorado orogé 0
elevation range of the area. 0

Action 1: Search[Colorado orogeny]
Observation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in Colorado and
Thought 2: It does not mention the eastern sector. So | need to look up eastern sector.

Action 2: Lookup[eastern sector] W|th G PT'3.5
Observation 2: (Result 1/ 1) The eastern sector extends into the High Plains and is called the Central Plg

on a multi-hop
O QA task _

£O

class MultiHop(dspy.Module):
def __init__(self):
self.generate_query = dspy.ChainOfThought("context, question -> query")

self.generate_answer = dspy.ChainOfThought("context, question -> answer")
Scores

def forward(self, question):

context = [] 50/
for hop in range(2): o

uery = self.generate_query(context, question).query with GPT-3.5

Carefully read the provided ‘context’ and ‘question’. Your task is to formulate a concise and
relevant ‘search query’ that could be used to retrieve information from a search engine to answer On multl-hop QA
the question most effectively. The ‘search query’ should encapsulate... 0
Context: [1] Twilight is a series of four vampire-themed fantasy romance... 0
[2] The Harper Connelly Mysteries is a series of fantasy...

[P 4R TN which year was the first of the vampire-themed fantasy romance novels, for which The]
Twilight Saga serves as a spin-off encyclopedic reference book, first published?

Reasoning: Let's determine when that fantasy romance novel was first published. Wlth T5-770M

Search Query: When was the first of the vampire-themed fantasy romance novels published?

Context: [1] The Victorians - Their Story In Pictures is a 2009 British documentary 0

[2] The Caxtons: A Family Picture is an 1849 Victorian novel by Edward ... 0
Question:
Reasoning: We know that the documentary series is about Victorian art and culture, and it was

written by Jeremy Paxman. We need to find the year in which Jeremy Paxman was born.

Search Query: Jeremy Paxman birth year With Llama2'13B

* prompt parts adapted & combined for presentation

Multi-Hop Retrieval-Augmented Generation (HotPotQA)

Program Optimized GPT 3.5 Llama2-13b-Chat
dspy.Predict("question -> answer") |)¢ 34.3 27.5

) ¢ 36.4 34.5
dspy.RAG (with CoT)

4 42.3 38.3

) ¢ 36.9 34.7
MultiHop

%4 54.7 50.0

Compiling MultiHop into a (T5-770M) with DSPy’s

BootstrapFinetune, starting from 200 answers, scores

30

DSPy Optimizers vary in how they tune the prompts & weights in a
program, but at a high level they typically...

1. Construct an initial prompt from each module via an Adapter
2. Generate examples of every module via rejection sampling

3. Usethe examples to update the program’s modules
a. Automatic few-shot prompting: dspy.BootstrapFewShotWithRandomSeazch

b. Induction of instructions: dspy .MIPROv2
C. Multi-stage fine-tuning: dspy.BootstrapFinetune

Optimizing Instructions and Demonstrations Fine-Tuning and Prompt Optimization:
for Muld-stige. LangnageModel Programs Two Great Steps that Work Better Together

Krista Opsahl-Ong'*, Michael J Ryan'*, Josh Purtell?,
David Broman®, Christopher Potts', Matei Zaharia!, Omar Khattab' Dilara Soylu Christopher Potts Omar Khattab

!Stanford University, 2Basis, *KTH Royal Institute of Technology “UC Berkeley Stanford University 31

That works well in practice...

e May’24: U of Toronto researchers won the MEDIQA competition via DSPy.

e Jun’24: U of Maryland researchers ran a direct case study.

Rank Team Error Sentence Detection Accuracy — =
earn Prompting
1 WangLab 83.6% @ @learnprompting
& EM_Mixers 64.0%))
3 knowlab_AIMed 61.9% @'We also put our expert prompt engineer against an Al prompt
4 hyeonhwang 61.5% aRmest
S Edinburgh Clinical NLP 61.1% Expert human prompt engineer, @sanderschulhoff faced off against
6 IryoNLP . 61.0% @lateinteraction's DSPy on a labeling task.
7 PromptMind 60.9%
8 MediFact 60.0% DSPY outperformed our expert Human Prompt Engineer by 50% on our
9 IKIM 59.0% test set and saved over 20 hours!
10 HSE NLP 52.0%

32

... and has enabled many SoTA systems

like PATH (Jasper Xia, UWaterloo); IReRa (Karel D’Oosterlink, UGhent), STORM (Yijia Shao, Stanford), EDEN (Siyan Li,

Columbia), Efficient Agents (Sayash Kapoor, Princeton), ECG-Chat (Yubao Zhao, Beijing Normal U), ...

Questiqn q
@ ldentify - :
@ Survey Perspectives @ Split Queries
{ W'k'ped'a @ Expert |® Search & Sift
»(Writer
T / / (® Synthesize
| @ Read & Ask |) - L
Related Articles | | Answer a ‘\

Add Specific Perspective

\
\\ Add Trusted
. Sources

‘ Gather

@ Direct Generate

(oot ot e oo | I

Draft Outline Op |
L = 7l l Refine

\\
Conversations {Cy, ..., Cy} | Al

Outline O

=

References R

Doc

Propose/v

Prompt

Optimizer

o

Prompts and validation
scores

4. Update and Optimize

1. Generate Synthetic
Training Data with LM

2. Train Reranker

Reranker

X

Finetuned

Relevance /
Ranking

Validate reranker on 10

relevance judgements

Reranker

Development
Retrievals

abstract module 1

@ input

Learning

In-Context ' queries

EE Elj knowledge base
~L abstract module 2
A S re-ranked
Frozen | documents ' In-Context documents St
Retriever : Learning

n iterations

33

Optimizing Instructions and Demonstrations
for Multi-Stage Language Model Programs

Krista Opsahl-Ong!*, Michael J Ryan!*, Josh Purtell?,
David Broman®, Christopher Potts', Matei Zaharia!, Omar Khattab'

!Stanford University, *Basis, ’KTH Royal Institute of Technology “UC Berkeley

Slides adapted from
Krista Opsahl-Ong & Michael Ryan

Problem Setting

Training/ Validation / Optimized LM Program P \

Inputs:

Outputs:

om Em Emm Emm o o o Em EE o o =y,

Input
]

Metric

+ il

Question: The Victorians is a documentary series written by an author born in what year?

for i in range(2): *

query =

context.append(,O retrieve “search_query”)

answer =

S

—-— e o e e o .y,
- e e s e e

Given the question and context passages, generate the correct answer.

Context: [1] The Victorians - Their Story In Pictures is
[2] Jeremy Dickson Paxman (born 11 May 1950) is an English...
Rationale: The Victorians was written by Jeremy Paxman. Jeremy Paxman was born—-e—LQL0
Answer: 1950 Few-Shot

Examples

\\Suestion: Which actor played in both..

Constraints / Assumptions

1. No access to log-probs or model weights: Developers may want to
optimize LM programs for use on APl only models.

2. No intermediate metrics / labels: We assume no access to manual
ground-truth labels for intermediate stages.

3. Budget-Conscious: We want to limit the number of input examples
we require and the number of program calls we make.

Key Challenges

?

Score: 85%

Prompt Proposal. Credit Assignment.
Searching over all possible strings We need efficient ways of

is intractable, especially as we add inferring how each prompt

in multiple modules we need to variable contributes to

optimize. Instead, we need to performance, so that we can find
propose a small set of high quality the best set for our program.
options.

1. Bootstrap Few-shot

Methods 2. Extending OPRO

3. MIPRO

1. Bootstrap Few-shot

» Bootstrap Few-shot examples with simple rejection

Bootstrap Few-Shot Examples

O. Khattab, A. Singhvi, P. Maheshwari, Z. Zhang, K. Santhanam, S. Vardhamanan, S. Haq, A. Sharma, T. T. Joshi, H. Moazam, H. Miller, M.
Zaharia, C. Potts “DSPY: COMPILING DECLARATIVE LANGUAGE MODEL CALLS INTO SELF-IMPROVING PIPELINES”

Bootstrap Few-Shot Examples

oo
for i in range(2):

query = ,J"‘ ‘

context.append(,O retrieve “search_query”)]

answer =

Bootstrap Few-Shot Examples

Training Input

oo
for i in range(2):

|

context.append(,O retrieve “search_query”)]

answer =

Bootstrap Few-Shot Examples

Training Input

Metric
o0

for i in range(2):

,—:> query = e ‘ |:>
context.append(,O retrieve “search_query”)]

answer =

|

Bootstrap Few-Shot Examples

Training Input

Metric
o0

for i in range(2):

- query = ‘ Sue ‘ |:>
context.append(,O retrieve “search_query”)]

answer =

|

Bootstrap Few-Shot Examples

Training Input

Metric
o0

for i in range(2):

|

,—:> query =‘ . ‘ f ‘ |:>
context.append(,O retrieve “search_query”)]

answer =

Search Query Output 1

Bootstrap Few-Shot Examples

Training Input

Metric
o0

for i in range(2):

|

,—:> query =‘ . ‘ f ‘ |:>
context.append(,O retrieve “search_query”)]

answer =

Search Query Output 1

Bootstrap Few-Shot Examples

Training Input

—

|

Metric
o0

for i in range(2):

b] “search query” | =)
context.append(,O retrieve “search_query”)]

answer =

Search Query Output 1

Search Query Output 2

Bootstrap Few-Shot Examples

Training Input

—

|

Metric
o0

for i in range(2):

b] “search query” | =)
context.append(,O retrieve “search_query”)]

answer =

Search Query Output 1

Search Query Output 2

Bootstrap Few-Shot Examples

Training Input Metric

7 “context, question->
—> G search query” —>

|

2 “context, question->
‘ answer”

Search Query Output 1
Search Query Output 2

Answer Output

Bootstrap Few-Shot Examples

Training Input Metric

7 “context, question->
—> G search query” =)

|

2 “context, question->
‘ answer”

Search Query Output 1
Search Query Output 2

Answer Output

Bootstrap Few-Shot Examples

Training Input Metric

7 “context, question->
—> G search query” —>

|

2 “context, question->
‘ answer”

Search Query Output 1
Search Query Output 2

Answer Output

Bootstrap Few-Shot Examples

Training Input Metric

ad || K<

oo
for i in range(2):

— query = frf Eivarsmebeiitg]

|

context.append(,O retrieve “search_query”)]

answer =

Search Query Output 1
Search Query Output 2

Answer Output

Bootstrap Few-Shot Examples

Training Input

—

|

Task
Demonstration <
Candidate

oo
for i in range(2):

query = ‘ - 7 ‘ ; ‘

context.append(,O retrieve “search_query”)]

answer =

Search Query Output 1
Search Query Output 2

Answer Output

Metric

ad || K<

Bootstrap Few-Shot (w/ Random Search)

Training Input

—

|

Task

Metric

ad || K<

Search for the best set
using random search!

oo
for i in range(2):

query = [ieh 7‘ |

context.append(,O retrieve “search_query”)]

answer =

T pre—p—

Search Query Output 1

Demonstration < Search Query Output 2 /

Candidate

Answer Output

Bootstrap Few-Shot (w/ Random Search)

//;iven the context passages and a question, generate the correct answer.

Context: [1] The Victorians - Their Story In Pictures is ...

[2] Jeremy Dickson Paxman (born 11 May 1950) is an English...
Question: The Victorians is a documentary series written by an author born in what year?
Rationale: The Victorians was written by Jeremy Paxman. Jeremy Paxman was born in 1950.

Answer: 1950

\\;..

Search Query Output 1
Task

Demonstration < Search Query Output 2
Candidate

Answer Output

2. Extending OPRO

« Extend existing instruction opt. method (OPRQ) to multi-stage

What is OPRO? Optimization through Prompting

Prompt Proposals

“Think step by step”

“Take a deep breath
and think step by step”

“Carefully solve the
problem”

“Let’s do the math”

“Proposer LM”

Evaluate

Given prompts/scores
propose more prompts.

“Think step by step”
Score: 31

“Take a deep breath and
think step by step”
Score: 42

C. Yang*, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, X. Chen* “Large Language Models as Optimizers”

Initial extension to multi-stage: CA-OPRO

Coordinate-Ascent OPRO

. Iterate D times .

In a given iteration, optimize each prompt sequentially.

PromptOpt
Subroutine

This is expensive to run...

O(NxD*xM)
=

4

F1=18

Module-Level OPRO

Module-Level OPRO

Key Idea: Coordinate-Ascent was expensive, maybe we don’t need explicit
credit assignment? Let’s just change both prompts at a time in parallel!

>
E

Given a question generate a search query

E

Given the context answer the question

:
|
|

I
> =2
=

-

~

Given a question generate a
comprehensive search query that will

retrieve pertinent information.

:f}
> ==
=

=

Score: 30 J

(.

Given the context answer the question by
identifying the relevant information and
providing a concise response

T
|

Score: 30

LM Program
-

\

Updated LM Program

)

Score: 30

Finally, Grounding!

L

(History of Instructions and h
Scores (and static task
S demos))

4)

Training set examples
(input/output pairs from

Y training set))

Proposer LM

7 | [New Instruction]

Finally, Grounding!

L

(History of Instructions and h
Scores (and static task
S demos))

4)

Training set examples
(input/output pairs from

Y training set))

Proposer LM

7 | [New Instruction]

Finally, Grounding!

(History of Instructions and h
Scores (and static task
L demos))

()

Bootstrapped demos
demos for a particular

L module in program)

7 | [New Instruction]

Bootstrapped demo example:

Question: The Victorians - Their Story In
Pictures is a documentary series written
by an author born in what year?

Reasoning: Let's think step by step in
order to find the search query. We need
to find the author's birth year. We can
search for the author's name along with
the phrase "birth year" or "birthday" to
get the desired information.

Search Query: "author of The Victorians
- Their Story In Pictures birth year" or
"author of The Victorians - Their Story In
Pictures birthday"

Finally, Grounding!

Dataset Summary (Loop
over the data and use an
LLM to write a summary)

(History of Instructions and h
Scores (and static task
L demos))

4)

Bootstrapped demos
demos for a particular

L module in program)

7 | [New Instruction]

Dataset summary example:

"The dataset consists of
factual, trivia-style
questions across a wide
range of topics, presented in a
clear and concise manner.
These questions are likely
designed for use in trivia
games..”

Finally, Grounding!

Dataset Summary (Loop
over the data and use an
LLM to write a summary)

(History of Instructions and h
Scores (and static task
L demos))

4)

Bootstrapped demos
demos for a particular

L module in program)

-

’

Summary of a Reflexive
View of the LM Program

Code itself

7 | [New Instruction]

Program Summary example:

“The program code appears to
be designed to answer
complex questions by
retrieving and processing
information from multiple
sources or passages. In this
case, the program is set up for
two hops, ... The module
‘self.generate_query’ in this
program is responsible for
generating a search query
based on the context and
question provided.”

Finally, Grounding!

Tip for instruction generation
(be creative, be succinct, etc.)

Dataset Summary (Loop
over the data and use an
LLM to write a summary)

(History of Instructions and A
Scores (and static task
L demos))

4)

Bootstrapped demos
demos for a particular

L module in program)

-

7

Summary of a Reflexive

View of the LM Program

Code itself

o | [New Instruction]

Tip example:

“Don’t be afraid to be creative
when generating the new
instruction”

“Keep the instruction clear and
concise."

“Make sure your instruction is
very informative and
descriptive."

1. Bootstrap Few-shot

Methods 2. Extending OPRO

3. MIPRO

« Co-optimize instructions & few-shot examples efficiently

MIPRO works in 3 steps:

Multi-prompt Instruction PRoposal Optimizer

Prompt
Proposal

Credit
Assignment

Step 3: Optimize with Bayesian Learning

L

Set of instructions / fewshot

candidates for each module: |

Bayesian
Opt.

LM Program

[Basic Instruction

[N/A

[Basic Instruction]

[N/A

]

)
]

J

Step 3: Optimize with Bayesian Learning

L

LM Program

Trial 1

e
Score: 75%

Bayesian
Opt.

Evaluate on

minibatches of data to
learn efficiently!

Step 3: Optimize with Bayesian Learning

LM Program

Trial 2

-
Score: 50%

Bayesian
Opt.

Step 3: Optimize with Bayesian Learning

LM Program

Trial 3

e
Score: 80%

Bayesian
Opt.

Step 3: Optimize with Bayesian Learning

LM Program

4)

Bayesian
Opt.

v
" oemoseczn |

S J

Step 3: Optimize with Bayesian Learning

L

LM Program

CEWCNET :
Opt. Every N trials, evaluate

on our full val set!

Step 3: Optimize with Bayesian Learning

Bayesian
Opt.

LM Program

-

" insmictonze_ |
" oemoserza |

J

Score

Trial=N
—:—
Score: 45%

Trial

Step 3: Optimize with Bayesian Learning

L

Bayesian
Opt.

LM Program

v
" oemoserz. |

-

J

Score

Return LM Program
with best score!

Trial

Experiments & Results

So how do these optimization methods compare?
Enter LangProBe, the Lanqguage Model Program Benchmark

Benchmark Task Type Program Modules LM Calls Metric
HotPotQA Multi-Hop QA Multi-Hop Retrieval 2 3 Exact Match
HotPotQA Conditional Multi-Hop QA Multi-Hop Retrieval 2 3 Custom

Iris Classification Chain of Thought 1 1 Accuracy
Heart Disease Classification Answer Ensemble 2 4 Accuracy
ScoNe Natural Language Inference Chain of Thought 1 1 Exact Match
HoVer Multi-Hop Claim Verify Multi-Hop Retrieval 4 4 Recall@21

So how do these optimization methods compare?
Enter LangProBe, the Lanqguage Model Program Benchmark

Benchmark Task Type Program Modules LM Calls Metric
HotPotQA Multi-Hop QA Multi-Hop Retrieval 2 3 Exact Match
HotPotQA Conditional Multi-Hop QA Multi-Hop Retrieval 2 3 Custom

Iris Classification Chain of Thought 1 1 Accuracy
Heart Disease Classification Answer Ensemble 2 4 Accuracy
ScoNe Natural Language Inference Chain of Thought 1 | Exact Match
HoVer Multi-Hop Claim Verify Multi-Hop Retrieval 4 4 Recall@21

Hypothesis: Instructions become more important in tasks with multiple
conditional rules, which cannot be fully expressed with a set # of few-shot ex.

Optimizer ‘ ScoNe ‘HotPotQA‘ HoVer Cond. -

HotPotQA| - ‘Heart

Instructions only (0-shot)

N/A 69.1 36.1 25.3 6 32 26.8
Module-Level OPRO —G| 76.1 36.0 25.7 - - -
Module-Level OPRO 73.5 39.0 32.5 - - -

0-Shot MIPRO 74 Ko 36.8 33.1 14.6 56.7 25.8

Optimizing instructions can deliver gains over baseline signatures.

*Results averaged across 5 runs. Bold values represent the highest average scores compared
to the second- highest, with significance supported by Wilcoxon signed-rank tests (p < .05).

Optimizer ‘ ScoNe ‘HotPotQA‘ HoVer Cond. -

HotPotQA| - ‘Heart

Instructions only (0-shot)

N/A 69.1 36.1 25.3 6 32 26.8
Module-Level OPRO —G| 76.1 36.0 25.7 - - -
Module-Level OPRO 73.5 39.0 32.5 - - -

0-Shot MIPRO 74 Ko 36.8 33.1 14.6 56.7 25.8

However, there’s no obvious best approach to
instruction proposal yet.

*Results averaged across 5 runs. Bold values represent the highest average scores compared
to the second- highest, with significance supported by Wilcoxon signed-rank tests (p < .05).

.. HotPotQA . Heart
Optimizer ‘ ScoNe ‘ HotPotQA‘ HoVer Cond. | Iris ‘ -
Instructions only (0-shot)
N/A 69.1 36.1 29.3 6 32 26.8
Module-Level OPRO —G| 76.1 36.0 25:7 - - -
Module-Level OPRO 1395 39.0 32.5 - - -
0-Shot MIPRO T1:5 36.8 33.1 14.6 56.7 25.8
Demonstrations only (Few-shot)

Bootstrap RS 75.4 45.8 37.2 10.4 58.7 79.2
Bayesian Bootstrap 77.4 46.2 37.6

Optimizing bootstrapped demonstrations is key!

*Results averaged across 5 runs. Bold values represent the highest average scores compared
to the second- highest, with significance supported by Wilcoxon signed-rank tests (p < .05).

Bootstrap Random Search

® Scores
72.5 4+ —— Best Score So Far ° e
Rolling Mean ®
70.0 I
e
67.5 1 ® L
% o P
®
$ 65.0 1 L L
@ ® o o/ ®
62.5 & o2 e
0 ..
60.0 ®
@
: oty .
57.5 ° O ® e
®° o L » o ¢1
55.0 e :
0 5000 10000 15000 20000 25000

Evaluation Calls

The bootstrapped demonstrations we choose matters a lot!
Understanding why is an area for future research.

.. HotPotQA : Heart
Optimizer ‘ ScoNe ‘HotPotQA‘ HoVer Cond. | Iris ‘ -
Instructions only (0-shot)
N/A 69.1 36.1 25.3 6 32 26.8
Module-Level OPRO —G| 76.1 36.0 25:7 - - -
Module-Level OPRO 139 39.0 32.5 - - -
0-Shot MIPRO TL15 36.8 33.1 14.6 56.7 25.8
Demonstrations only (Few-shot)
Bootstrap RS 75.4 45.8 D2 10.4 58.7 79.2
Bayesian Bootstrap 77.4 46.2 37.6 - - -
Both (Few-shot)
MIPRO | 794 | 464 | 390 | 233 | 687 | 742

Optimizing both instructions and demonstrations via
MIPRO is a often the most effective approach!

.. HotPotQA : Heart
Optimizer ‘ ScoNe ‘HotPotQA‘ HoVer Cond. | Iris ‘ -
Instructions only (0-shot)
N/A 69.1 36.1 25.3 6 32 26.8
Module-Level OPRO —G| 76.1 36.0 25:7 - - -
Module-Level OPRO 139 39.0 32.5 - - -
0-Shot MIPRO TL15 36.8 33.1 14.6 56.7 25.8
Demonstrations only (Few-shot)
Bootstrap RS 75.4 45.8 D2 10.4 58.7 79.2
Bayesian Bootstrap 77.4 46.2 37.6 - - -
Both (Few-shot)
MIPRO | 794 | 464 | 390 233 | 687 | 742

The impact of optimizing instructions (rather than demonstrations)
is more visible in tasks that have many isolated conditional rules.

Summary & Lessons

Key Lessons I: Natural Language Progamming

1. Programs can often be more accurate, controllable,
transparent, and even efficient than models.

2. You just need declarative programs, not implementation
details. High-level optimizers can bootstrap prompts — or
weights, or whatever the next paradigm deals with.

DSPy makes it possible to program LMs

Hand=-writterprompts = Signatures
Prorptrstechrtguesana-proraptehats = Modules

ga = dspy.Predict("question -> answer")
mt = dspy.ChainOfThought("english_document -> french_translation")
rc = dspy.ProgramOfThought("contexts, question -> answer_found: bool")

Maruatpremptengireerng = Optimized programs

Optimizer(metric).compile(program, dataset)

88

and is being widely used in production & OSS -- dspy.ai

at JetBlue, Databricks, Walmart, VMware, Replit, Haize Labs, Normal Computing, Sephora, Moody’s...

< Haize Labs Blog ¥ ** Website &
replit

Home » Posts

Red-Teaming Language Models with
DSPy

& Backto blog

A

Building LLMs for Code Repair

DSPy Optimizes <—— LLM Evaluator |

2 2
=)

3 -]
2] <
= =
x x
]

g 8
< =z

Code Repair

Figure 1: Overview of DSPy for red-teaming. The DSPy MIPRO optimizer, guided by a LLM as a judge,

) I num, count C repllt al . ﬁteIﬂS()) piles our language program into an effective red-teamer against Vicuna.

nums[index] == Inum Acchitactnne e
i n d ex += 1 None (Raw Input)
1 ‘f_ count >> 1 Architecture (5 Layer)

Architecture (5 Layer) + Optimization

and is being widely used in production & OSS -- dspy.ai

at JetBlue, Databricks, Walmart, VMware, Replit, Haize Labs, Normal Computing, Sephora, Moody’s...

Haize Labs Blog ¥ ** Website &

DSPy

¥ Fork 1.2k v Starred 16.1k

The End of Prompting, The Beginning of Compound Systems

As more and more companies leverage LLMs, the limitations of a generic chatbot
interface are increasingly clear. These off-the-shelf platforms are highly
dependent on parameters that are outside the control of both end-users and
administrators. By constructing compound systems that leverage a combination
of LLM calls and traditional software development, companies can easily adapt
and optimize these solutions to fit their use case. DSPy is enabling this paradigm
shift toward modular, trustworthy LLM systems that can optimize themselves
against any metric. With the power of Databricks and DSPy, JetBlue is able to
deploy better LLM solutions at scale and push the boundaries of what is possible.

downloads/month 160k

Contributors 206

1
L T
ps

ﬂﬂﬂﬂﬂ VO 18
4« 22209090

Figure 7: Using Databricks’ solutions, JetBlue's complete chatbot architecture makes use of custom document
uploads with different user groups

Key Lessons II: Natural Language Optimization

1.

In isolation, on many tasks nothing beats bootstrapping good
demonstrations. Show don’t tell!

Generating good instructions on top of these is possible, and is
especially important for tasks with conditional rules!

But you will need effective grounding, and explicit forms of
credit assignment.

Can open research again lead Al progress?

A DS Py (dspy.ai) aims to show that this lies in modularity.

Y Not ever-larger, opaque LMs in isolation.
Y Not ad-hoc tricks for prompting or synthetic data.

But well-scoped programs, better inference-time strategies,

and new ways to optimize how LMs are used to solve tasks.

92

