
Building an

Multimodal Knowledge
Assistant

Jerry Liu

September 23, 2024

LlamaIndex:

Build Production LLM Apps
over Enterprise Data

LlamaIndex

LlamaIndex helps any developer
build context-augmented LLM
apps from prototype to
production.

Open-Source: Leading developer toolkit for
building production LLM apps over data.

Docs: https://docs.llamaindex.ai/

Repo: https://github.com/run-llama/llama_index

LlamaCloud: A centralized knowledge interface
for your production LLM application.

Link: https://cloud.llamaindex.ai/

Evals Agents

Vectors Semantic
Search

LLMs Chat

Raw Data Q&A

Embedding Structured
Extraction

https://docs.llamaindex.ai/
https://github.com/run-llama/llama_index
https://cloud.llamaindex.ai/

Building a Knowledge Assistant

LlamaIndex

Goal: Build an interface that can take in any
task as input and give back an output.

Input forms: simple questions, complex
questions, research tasks

Output forms: short answer, structured
output, research report

Human:
<Question>

Answer:

Sources: ...

Knowledge

Base

Human: ...

Human: ...

Agent: ...

Agent: ...

Knowledge Assistant with Basic RAG

Data Processing and Indexing Basic Retrieval and Prompting

LlamaIndex

⚠ ️Naive data processing, primitive retrieval
interface

⚠ ️Poor query understanding/planning

⚠ ️No function calling or tool use

⚠ ️Stateless, no memory

Basic Text Splitting Top-K = 5

Simple QA Prompt

Index ResponseData

Can we do more?

LlamaIndex

There’s many questions/tasks that naive
RAG can’t give an answer to

 Hallucinations

 Limited time savings

 Limited decision-making enhancement

How do we aim to build
a production-ready

knowledge assistant?

A Better Knowledge Assistant

LlamaIndex

�� High-quality Multimodal RA�
�� Complex output generatio�
�� Agentic reasoning over complex input�
�� Towards a scalable, full-stack application

Advanced Data and Retrieval

Data Index
Agent Response

Data Processing

A Better Knowledge Assistant

LlamaIndex

�� High-quality Multimodal RA�
�� Complex output generatio�
�� Agentic reasoning over complex input�
�� Towards a scalable, full-stack application

Action-TakingReport
Generation

Data Analysis

A Better Knowledge Assistant

LlamaIndex

�� High-quality Multimodal RA�
�� Complex output generatio�
�� Agentic reasoning over complex input�
�� Towards a scalable, full-stack application

Tool Use

Query Planning

Memory

Reflection

Tool x

Tool x

Tool ds

Tool ds
ResponseAgent

Other Tools

Other Tools

Advanced RAG and
Retrieval Tool

A Better Knowledge Assistant

LlamaIndex

�� High-quality Multimodal RA�
�� Complex output generatio�
�� Agentic reasoning over complex input�
�� Towards a scalable, full-stack application

User Message Queue

Agent 1

Agent 2

Agent 3

Orchestrator

Control Plane

Human-in-the-loop
Service
Metadata

Decides what happens
next

Setting up Multimodal RAG

Any LLM App is only as
Good as your Data

LlamaIndex

Garbage in = garbage out

Good data quality is a necessary
component of any production LLM app.

Raw Data Data Processing Clean Data

Production LLM Apps

Structured Extraction

Semantic Search

Chat

Agents

Q&A

ETL for LLM�
� Parsin�
� Chunkin�
� Indexing

Case Study: Complex Documents

LlamaIndex

A lot of documents can be classified
as complex:�

� Embedded Tables, Charts, Image�
� Irregular Layout�
� Headers/Footers

Users want to ask research questions
over this data�

� Simple pointed question�
� Multi-document comparison�
� Research tasks

Building a production-ready
knowledge assistants over this
complex data is challenging.

Knowledge-Intensive LLM Applications

Data Foundation Models

Developers

Sales Dev Legal Finance

An LLM-Native Document Parser

LlamaIndex

An ideal GenAI-native parser can structure complex
document data for any downstream use case.

Requirement�
� Parse tables accurately into text and semi-

structured representation�
� Parse text into semantically coherent chunk�
� Extract visual elements (images/diagrams/charts)

into structured formats and return image chunks�
� Automated metadata extraction

Non-Requirement�
� Extract detailed JSONs for every elemen�
� Extract bounding boxes

PDF

Node Node

Text Chunk Tables Text Chunk Diagrams

Node Node

LlamaParse

“As an AI Applied Data Scientist who was granted one of the
first ML patents in the U.S., and who is building cutting-edge AI
capabilities at one of the world’s largest Private Equity Funds, I
can confidently say that LlamaParse from LlamaIndex is
currently the best technology I have seen for parsing complex
document structures for Enterprise RAG pipelines. Its ability to
preserve nested tables, extract challenging spatial layouts, and
images is key to maintaining data integrity in advanced RAG and
agentic model building.”

Dean Barr, Applied AI Lead at Carlyle

LlamaParse

LlamaIndex

Advanced document parser specifically for
reducing LLM hallucinations

20k+
unique users

25M+
pages processed

Use Cases

LlamaIndex

Multimodal RAG Annual Reports (Tables) Excel Sheets Forms

https://github.com/run-llama/llama_parse/blob/main/examples/multimodal/multimodal_rag_slide_deck.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/multimodal/multimodal_rag_slide_deck.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/multimodal/multimodal_rag_slide_deck.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/multimodal/multimodal_rag_slide_deck.ipynb

Advanced Parsing + Advanced Indexing

LlamaIndex

You can combine parsing with hierarchical
indexing and retrieval to model
heterogeneous unstructured/tabular/
multimodal data within a document�

�� Parse documents into elements: text
chunks, tables, images, and more�

�� For each element, extract one or more
text representations that can be
indexed�

�� Do recursive retrieval

PDF

Node Node

Text Chunk Tables Text Chunk Diagrams

Node Node

Multimodal RAG Pipeline

LlamaIndex

Indexin�
�� Parse document into text and image

chunks with LlamaPars�
�� Link each text chunk to image chunk

through metadat�
�� Embed and index text chunks

A true multimodal RAG pipeline stores both text and image chunks for use within a multi-modal LLM

Retrieva�
�� Retrieve text chunks by text

embedding�
�� Feed in both text and image to

multimodal LLM during synthesis.

Multimodal RAG Pipeline

LlamaIndex

Let’s run through a demo example of
building multimodal RAG over a complex
slide deck!

The end result is you’re able to ask
questions over visual data in the
document.

https://github.com/run-llama/
llama_parse/blob/main/examples/
multimodal/
multimodal_rag_slide_deck.ipynb

https://github.com/run-llama/llama_parse/blob/main/examples/multimodal/multimodal_rag_slide_deck.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/multimodal/multimodal_rag_slide_deck.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/multimodal/multimodal_rag_slide_deck.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/multimodal/multimodal_rag_slide_deck.ipynb

LlamaCloud: An Enterprise RAG Platform

LlamaIndex

A production-ready RAG platform that allows developers to
easily connect their unstructured data sources to LLM agent
systems.

 Instant Time-to-Value for building knowledge assistant�
� Out-of-the-box advanced RAG capabilitie�
� Free up developer time to rapidly iterate on higher-

level agent use cases

 State-of-the-Performance leads to increased

satisfaction and reduced compliance risk

 Reduced maintenance cost once application is deployed

 Enterprise-ready security like access controls

Signup: https://cloud.llamaindex.ai/ Data

Ingestion Indexing Retrieval

LlamaCloud

https://cloud.llamaindex.ai/

E2E Multimodal RAG Capabilities

LlamaIndex

Setup multimodal indexing and retrieval in minutes

Signup here: https://cloud.llamaindex.ai/

https://cloud.llamaindex.ai/

LlamaIndex

Report Generation

Automating Decision Making

LlamaIndex

Action-Taking

Agent

Report
Generation

Data Analysis

Agents should have the capability to not only generate chatbot responses,
but als�
�� Produce knowledge wor�
�� Take actions

 Action-taking and Output Generation potentially lead to much greater ROI
in terms of time savings and capability improvement

Solution : Structured Outputs and Function Calling

Multimodal Report Generation

LlamaIndex

Generate interleaving text-and-image responses with the help
of structured outputs.

https://github.com/run-llama/llama_parse/blob/main/examples/
multimodal/multimodal_report_generation.ipynb

Output Schema

class TextBlock(BaseModel):

 text: str

class ImageBlock(BaseModel):

 file_path: str

class ReportOutput(BaseModel):

 blocks: ListBlock | ImageBlock]

https://github.com/run-llama/llama_parse/blob/main/examples/multimodal/multimodal_report_generation.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/multimodal/multimodal_report_generation.ipynb

Agentic Reasoning over Complex Inputs

Complex Inputs

LlamaIndex

Naive RAG works well for pointed questions, but fails on more complex tasks.

Summarization Questions: “Give me a summary of the entire <company> 10K annual report”

Comparison Questions: “Compare the open-source contributions of candidate A and candidate B”

Multi-part Questions: “Tell me about the pro-X arguments in article A, and tell me about the pro-Y
arguments in article B, make a table based on our internal style guide, then generate your own
conclusion based on these facts.”

Research Tasks: “I want to create a research survey on current supervised fine-tuning techniques.
Can you help?”

Tool Use
Routing

One-Shot Query
Planning

ReAct

Conversation
Memory

Dynamic Planning +
Execution

From Simple to Advanced Agents

LlamaIndex

Simple

Lower Cost

Lower Latency

Advanced

Higher Cost 

Higher Latency

Agent Ingredients Agent Ingredients

Agentic RAG

LlamaIndex

Every data interface is a tool

Use agent reasoning loops (sequential,
DAG, tree) to tackle complex tasks

End Result: Build personalized QA systems
capable of handling complex questions!

Tool Use

Query Planning

Memory

Reflection

Tool x

Tool x

Tool ds

Tool ds
ResponseAgent

Other Tools

Other Tools

Advanced RAG and
Retrieval Tool

Unconstrained vs. Constrained Flows

LlamaIndex

More Constrained Flows

More Reliable

Less Expressive

Router Response

RAG Tool

ReflectionTask

SQL Tool

Unconstrained vs. Constrained Flows

LlamaIndex

Unconstrained Flows

Less Reliable

More Expressive

Task Agent
Orchestrator RAG Tool

SQL Tool

Web Tool

Response

Agentic Orchestration Foundations

LlamaIndex

Router Response

RAG Tool

ReflectionTask

SQL Tool

LlamaIndex Workflows

We believe an agent orchestration framework should have the following properties

 Event-Driven: Model each step as listening to input events and emitting output events

 Composable: Piece together granular workflows into higher-level workflows

 Flexible: Write logic through LLM calls or through plain Python

 Code-first: Express orchestration logic through code. Easy to read and easy to extend.

 Debuggable and Observable: Step through and observe states

 Easily Deployable to Production: Translate notebook code into services that run in production.

def generate_response(context, query): 
 prompt = f"Question: {query}\n\nContext: {context}\n\nAnswer:" 
 response = llm.complete(prompt) 
 return response.text 

Define the pipeline

pipeline = QueryPipeline()

pipeline.add_modules({ 
 "input": InputComponent(), 
 "retriever": retriever, 
 "reranker": reranker,

 "response_generator": FnComponent(fn=generate_response)

}) 

Define the flow

pipeline.add_link("input", "retriever")

pipeline.add_link("retriever", "reranker")

pipeline.add_link("input", "response_generator", dest_key="query")

pipeline.add_link(

 "reranker", "response_generator", dest_key="context"

)

Run the pipeline

response = pipeline.run("What is the capital of France?")

print(response)

Compared to Graph-based Approaches

Graph-based approaches (e.g. our deprecated Query Pipelines) can be cumbersome and non-Pythonic for complex agentic workflows.

� Orchestration logic baked into edge�
� More lines of code, less readabl�
� Cumbersome to dynamically generate workflows based on runtime

conditions

def generate_response(context, query): 
 prompt = f"Question: {query}\n\nContext: {context}\n\nAnswer:" 
 response = llm.complete(prompt) 
 return response.text 

Define the pipeline

pipeline = QueryPipeline()

pipeline.add_modules({ 
 "input": InputComponent(), 
 "retriever": retriever, 
 "reranker": reranker,

 "response_generator": FnComponent(fn=generate_response)

}) 

Define the flow

pipeline.add_link("input", "retriever")

pipeline.add_link("retriever", "reranker")

pipeline.add_link("input", "response_generator", dest_key="query")

pipeline.add_link(

 "reranker", "response_generator", dest_key="context"

)

Run the pipeline

response = pipeline.run("What is the capital of France?")

print(response)

Compared to Graph-based Approaches

Graph-based approaches (e.g. our deprecated Query Pipelines) can be cumbersome and non-Pythonic for complex agentic workflows.

Compared to query pipelines, our workflows are more readable, and easier to maintain/scale.

class RAGWorkflow(Workflow): 
 def __init__(self):

 ...  

 @step 
 async def retrieve(self, query: str): 
 return self.retriever.retrieve(query)  

 @step 
 async def rerank(self, retrieved_nodes): 
 return self.reranker.postprocess_nodes(retrieved_nodes)  

 @step 
 async def generate_response(self, query: str, context): 
 prompt = f"Question: {query}\n\nContext:
{context}\n\nAnswer:" 
 response = await self.llm.complete(prompt) 
 return response.text  

 @step 
 async def run_workflow(self, query: str): 
 retrieved_nodes = await self.retrieve(query) 
 reranked_nodes = await self.rerank(retrieved_nodes) 
 response = await self.generate_response(query,
[node.get_content() for node in reranked_nodes]) 
 return response

Benefits and Risks

 Action-taking and Output Generation
potentially lead to much greater ROI in terms
of time savings and capability improvement

⚠ ️LLMs need to achieve a greater degree of
reliability

⚠ ️Action-taking requires ample human-in-the-
loop to build trust.

LlamaIndex

Multimodal Report Generation

LlamaIndex

Generate interleaving text-and-image responses with the help of
structured outputs.

Example architecture: research and writer step�
�� The researcher retrieves relevant chunks and documents, and

puts them into a data cache�
�� The writer uses the data cache to generate a structured output

of interleaving text and image blocks.

Multimodal Report Generation

LlamaIndex

Generate interleaving text-and-image responses with the help of
structured outputs.

https://github.com/run-llama/llama_parse/blob/main/examples/
multimodal/multimodal_report_generation_agent.ipynb

https://github.com/run-llama/llama_parse/blob/main/examples/multimodal/multimodal_report_generation_agent.ipynb
https://github.com/run-llama/llama_parse/blob/main/examples/multimodal/multimodal_report_generation_agent.ipynb

Towards a Scalable, Full-Stack Application

P

Running Agents in Production

LlamaIndex

You need the right architecture and infra components to serve
complex, agentic workflows to end-users as a production application.

Requirements�
�� Encapsulation and re-us�
�� Standardized communication interfaces between agents and with

the client.�
�� Scalability in number of users and number of agent�
�� Human-in-the-loop for the end-use�
�� Debugging and observability tools for the developer

User Production

Agent 1

Agent 2

Agent 3

llama-deploy

LlamaIndex

Deploy agentic workflows as microservices.�
� Model every agent workflow as a service AP�
� All agent communication occurs via a central message queu�
� Distributed tool-executio�
� Human-in-the-loop as a servic�
� Easy deployment with docker-compose and Kubernetes

User Message Queue

Agent 1

Agent 2

Agent 3

Orchestrator

Control Plane

Service
Metadata

Decides what happens
next

� https://github.com/run-llama/llama_deploy

https://github.com/run-llama/llama-agents

Thank you!

LlamaIndex

September 23, 2024

